Crystal structure and magnetic properties of a new layered sodium nickel hydroxide phosphate, Na2Ni3(OH)2(PO4)2.

Mixed sodium nickel hydroxide phosphate, Na2Ni3(OH)2(PO4)2, has been synthesized hydrothermally from the system NiCO3-Na4P2O7-NaCl-H2O. Its monoclinic crystal structure has been determined by single crystal X-ray diffraction: a = 14.259(5), b = 5.695(2), c = 4.933(1) Å, β = 104.28(3)°, space group C2/m, Z = 2, ρc = 3.816 g cm(-3), R = 0.026. The underlying spin model has been characterized in terms of first-principles electronic structure calculations. The compound is formed by alternating layers of [NiO6] octahedra and [NaO7] polyhedra, combined in the [100] direction with tetrahedral [PO4] oxocomplexes and hydrogen bonds. The novel phase is treated as an isostructural variant of the two-dimensional potassium manganese hydroxide vanadate, K2Mn3(OH)2(VO4)2, which can be formally obtained by morphotropic substitutions of all positions in the cationic sublattice. The stripe arrangement of Ni(2+) ions (S = 1) within [NiO4(OH)2] layers of Na2Ni3(OH)2(PO4)2 is unique in the sense that its magnetic topology places it in between widely discussed honeycomb and kagomé lattices. The Na2Ni3(OH)2(PO4)2 is a low-dimensional magnet, which reaches the short-range correlation regime at Tmax = 38.4 K and orders antiferromagnetically at TN = 33.4 K.

[1]  V. Anisimov,et al.  Barium vanadium silicate BaVSi 2 O 7 : A t 2g counterpart of the Han purple compound , 2013 .

[2]  T. Saha‐Dasgupta,et al.  Tuning of magnetic ground state of the spin-12square-lattice compound Zn2VO(PO4)2through chemical substitution , 2013 .

[3]  O. Volkova,et al.  The first vanadate-carbonate, K2Mn3(VO4)2(CO3): crystal structure and physical properties. , 2013, Inorganic chemistry.

[4]  C. A. Lamas,et al.  Exotic disordered phases in the quantum J1-J2 model on the honeycomb lattice , 2013, 1301.2428.

[5]  J. Lin,et al.  A new layered triangular antiferromagnet Li4FeSbO6: spin order, field-induced transitions and anomalous critical behavior. , 2013, Dalton transactions.

[6]  C. Hoch Vom Mineral lernen , 2012 .

[7]  R. F. Bishop,et al.  Spin-1/2 Heisenberg antiferromagnet on an anisotropic kagome lattice , 2012, 1208.3989.

[8]  Louis J. Farrugia,et al.  WinGX and ORTEP for Windows: an update , 2012 .

[9]  M. Jansen,et al.  Magnetic properties of PdAs2O6 A dilute spin system with an unusually high Neel temperature , 2012, 1204.0102.

[10]  A. Honecker,et al.  Multiferroic FeTe2O5Br: Alternating spin chains with frustrated interchain interactions , 2012, 1202.4799.

[11]  Jie Xiao,et al.  Crystal Structure, Physical Properties, and Electrochemistry of Copper Substituted LiFePO4 Single Crystals , 2012 .

[12]  D. Nocera,et al.  Frustrated magnetism in the S = 1 kagomé lattice BaNi3(OH)2(VO4)2. , 2012, Chemical communications.

[13]  T. Saha‐Dasgupta,et al.  Understanding neutron scattering data in YMn 2 O 5 : an effective spin Hamiltonian , 2011 .

[14]  V. Caignaert,et al.  Transition metal hydrogenophosphates: a potential source of new protonic and lithium conductors , 2011 .

[15]  O. Cépas,et al.  Realization of the Nersesyan-Tsvelik model in (NO)[Cu(NO3)3] , 2010, 1004.0444.

[16]  Jean-Marie Tarascon,et al.  Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis† , 2010 .

[17]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[18]  C. Gros,et al.  Proposed low-energy model Hamiltonian for the spin-gapped system CuTe 2 O 5 , 2008 .

[19]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[20]  A. Moskvin,et al.  Helimagnetism and weak ferromagnetism in edge-shared chain cuprates , 2007 .

[21]  O. Volkova,et al.  Singlet ground state determined by isolated Cu2+ chain topology in microporous Na2Cu2Si4O11.2H2O and Na2Cu2Si4O11 , 2005 .

[22]  C. Gros,et al.  Na2V3O7: a frustrated nanotubular system with spin-1/2 diamond ring geometry. , 2004, Physical review letters.

[23]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[24]  Caridad Ruiz-Valero,et al.  Synthesis, Structural Characterization, Magnetic Properties, and Ionic Conductivity of Na4MII3(PO4)2(P2O7) (MII = Mn, Co, Ni) , 2001 .

[25]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[26]  T. Saha‐Dasgupta,et al.  Modeling the electronic behavior of gamma-LiV2O5: a microscopic study. , 2001, Physical review letters.

[27]  O. K. Andersen,et al.  Muffin-tin orbitals of arbitrary order , 2000, cond-mat/0010454.

[28]  J. M. Rojo,et al.  Crystal Structure, Magnetic Properties, and Ionic Conductivity of a New Mixed-Anion Phosphate Na4Ni5(PO4)2(P2O7)2 , 1999 .

[29]  J. Martínez,et al.  Structure Characterization and Magnetic Behavior of NaNi4(PO4)3and KMn4(PO4)3 , 1999 .

[30]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[31]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[32]  D. Guyomard,et al.  K2Mn3(OH)2(VO4)2, a New Two‐Dimensional Potassium Manganese(II) Hydroxyvanadate , 1996 .

[33]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[34]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[35]  Ove Jepsen,et al.  Explicit, First-Principles Tight-Binding Theory , 1984 .

[36]  I. D. Brown,et al.  On the geometry of O–H⋯O hydrogen bonds , 1976 .

[37]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[38]  I. Brown,et al.  Empirical bond-strength–bond-length curves for oxides , 1973 .