c-Met inhibitors with different binding modes: Two is better than one

Primary and acquired resistance to kinase inhibitors due to pre-existing mutations of the target or to mutations that arise as a result of selection by therapy is now a common theme in cancer patients treated with these drugs. Different classes of inhibitors for the same target have been successful in overcoming, at least temporarily, these resistance mechanisms because of their ability to interact with the mutated receptor. Therefore, having different classes of inhibitors for a given target might offer more treatment options for cancer patients. c-Met inhibitors are emerging as potentially important new cancer drugs and profiling these agents against several mutant receptors has begun. We have recently identified c-Met inhibitors that are active against wild-type and mutated c-Met variants. X-ray crystallography revealed that this class of inhibitors binds c-Met very differently than another c-Met inhibitor that shows primary resistance to some c-Met mutants. Our results suggested that it is possible to identify c-Met inhibitors that will be active against a range of c-Met mutations.

[1]  William Pao,et al.  MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib , 2007, Proceedings of the National Academy of Sciences.

[2]  G. Daley,et al.  Mechanisms of Autoinhibition and STI-571/Imatinib Resistance Revealed by Mutagenesis of BCR-ABL , 2003, Cell.

[3]  K. Furge,et al.  Suppression of Ras-mediated tumorigenicity and metastasis through inhibition of the Met receptor tyrosine kinase , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Krystal J Alligood,et al.  A Unique Structure for Epidermal Growth Factor Receptor Bound to GW572016 (Lapatinib) , 2004, Cancer Research.

[5]  P. Marynen,et al.  Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. , 2005, Gastroenterology.

[6]  R. Wilson,et al.  EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Patricia L. Harris,et al.  Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. , 2004, The New England journal of medicine.

[8]  M. Ferrone,et al.  Functional analyses and molecular modeling of two c-Kit mutations responsible for imatinib secondary resistance in GIST patients , 2006, Oncogene.

[9]  P. Casali,et al.  Expression of Ligand-Activated KIT and Platelet-Derived Growth Factor Receptor β Tyrosine Kinase Receptors in Synovial Sarcoma , 2004, Clinical Cancer Research.

[10]  M. Ivan,et al.  Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells , 1997, Oncogene.

[11]  Gayatry Mohapatra,et al.  Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752 , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Gabriel,et al.  EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy , 2004, Science.

[13]  T Takahashi,et al.  Gains, losses, and amplifications of genomic materials in primary gastric cancers analyzed by comparative genomic hybridization , 1999, Genes, chromosomes & cancer.

[14]  P. Comoglio,et al.  Cancer therapy: can the challenge be MET? , 2005, Trends in molecular medicine.

[15]  Daniel K. Treiber,et al.  Structure of the kinase domain of an imatinib-resistant Abl mutant in complex with the Aurora kinase inhibitor VX-680. , 2006, Cancer research.

[16]  P. Comoglio,et al.  Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas , 2000, Oncogene.

[17]  W. Birchmeier,et al.  Met, metastasis, motility and more , 2003, Nature Reviews Molecular Cell Biology.

[18]  Jilin Sun,et al.  Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. , 2006, Cancer research.

[19]  Ping Chen,et al.  Overriding Imatinib Resistance with a Novel ABL Kinase Inhibitor , 2004, Science.

[20]  Joon-Oh Park,et al.  MET Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling , 2007, Science.

[21]  P. Comoglio,et al.  Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. , 2003, Cancer cell.

[22]  P. Choyke,et al.  Identification of the Genes for Kidney Cancer: Opportunity for Disease-Specific Targeted Therapeutics , 2007, Clinical Cancer Research.

[23]  J. Kuriyan,et al.  Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. , 2002, Cancer cell.

[24]  H. Ito,et al.  Frequent amplification of the c-met gene in scirrhous type stomach cancer. , 1992, Biochemical and biophysical research communications.

[25]  Shinji Yamazaki,et al.  An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. , 2007, Cancer research.

[26]  A. D. Van den Abbeele,et al.  Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[27]  Doriano Fabbro,et al.  Prediction of Resistance to Small Molecule FLT3 Inhibitors , 2004, Cancer Research.

[28]  M. van Glabbeke,et al.  Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. , 2004, European journal of cancer.

[29]  Wei Zhang,et al.  A Missense Mutation in KIT Kinase Domain 1 Correlates with Imatinib Resistance in Gastrointestinal Stromal Tumors , 2004, Cancer Research.

[30]  J. Mestan,et al.  Identification of BCR-ABL point mutations conferring resistance to the Abl kinase inhibitor AMN107 (nilotinib) by a random mutagenesis study. , 2005, Blood.

[31]  Matthew Meyerson,et al.  Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. , 2007, Cancer cell.

[32]  M. Fiscella,et al.  Evidence for a role of Met-HGF/SF during Ras-mediated tumorigenesis/metastasis , 1998, Oncogene.

[33]  L. Schmidt,et al.  The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward different receptor mutated variants , 2004, Oncogene.

[34]  M. Wittekind,et al.  The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. , 2006, Cancer research.

[35]  C. Antonescu,et al.  Acquired Resistance to Imatinib in Gastrointestinal Stromal Tumor Occurs Through Secondary Gene Mutation , 2005, Clinical Cancer Research.

[36]  K. Rex,et al.  c-Met Inhibitors with Novel Binding Mode Show Activity against Several Hereditary Papillary Renal Cell Carcinoma-related Mutations* , 2008, Journal of Biological Chemistry.

[37]  W. Pao,et al.  Update on Epidermal Growth Factor Receptor Mutations in Non–Small Cell Lung Cancer , 2006, Clinical Cancer Research.