Structured population dynamics, a modeling perspective.

[1]  W. Feller,et al.  An Introduction to Probability Theory and Its Application. , 1951 .

[2]  Horst R. Thieme,et al.  Well-posedness of physiologically structured population models for Daphnia magna , 1988 .

[3]  Azmy S. Ackleh,et al.  A monotone approximation for a nonlinear nonautonomous size-structured population model , 2000, Appl. Math. Comput..

[4]  M Gyllenberg,et al.  On fitness in structured metapopulations , 2001, Journal of mathematical biology.

[5]  Numerical integration of nonlinear size-structured population equations , 2000 .

[6]  D. DeAngelis,et al.  Individual-Based Models and Approaches in Ecology , 1992 .

[7]  Odo Diekmann,et al.  NUMERICAL CONTINUATION OF EQUILIBRIA OF PHYSIOLOGICALLY STRUCTURED POPULATION MODELS I: THEORY , 1997 .

[8]  B W Kooi,et al.  Discrete event versus continuous approach to reproduction in structured population dynamics. , 1999, Theoretical population biology.

[9]  Odo Diekmann,et al.  On the formulation and analysis of general deterministic structured population models I. Linear Theory , 1998, Journal of mathematical biology.

[10]  Ovide Arino,et al.  A Singular Perturbation in an Age-Structured Population Model , 1999, SIAM J. Appl. Math..

[11]  M. Kimmel,et al.  Asymptotic behavior of a nonlinear functional-integral equation of cell kinetics with unequal division , 1989, Journal of mathematical biology.

[12]  J J Tyson,et al.  Cell growth and division: a deterministic/probabilistic model of the cell cycle , 1986, Journal of mathematical biology.

[13]  J Tyrcha Age-dependent cell cycle models. , 2001, Journal of theoretical biology.

[14]  Hal Caswell,et al.  Matrix Methods for Population Analysis , 1997 .

[15]  Graeme Fairweather,et al.  A Box Method for a Nonlinear Equation of Population Dynamics , 1991 .

[16]  B W Kooi,et al.  Iteroparous reproduction strategies and population dynamics , 2001, Bulletin of mathematical biology.

[17]  M Gyllenberg,et al.  Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. , 1998, Theoretical population biology.

[18]  J. Cushing An introduction to structured population dynamics , 1987 .

[19]  David Claessen,et al.  Dwarfs and Giants: Cannibalism and Competition in Size‐Structured Populations , 2000, The American Naturalist.

[20]  P. Jagers,et al.  The Growth and Stabilization of Populations , 1991 .

[21]  O. Diekmann,et al.  On the formulation and analysis of general deterministic structured population models II. Nonlinear theory , 2000 .

[22]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[23]  Richard H. Elderkin Theory of nonlinear age-dependent population dynamics (Monographs and textbooks in pure and applied mathematics, vol. 89): By G.F. Webb. Dekker, New York (1985). vi+294 pp. $65.00 , 1987 .

[24]  A deterministic size-structured population model for the worm Naidis elinguis. , 2001 .

[25]  Bob W. Kooi,et al.  DISCRETE AND CONTINUOUS TIME POPULATION MODELS, A COMPARISON CONCERNING PROLIFERATION BY FISSION , 1995 .

[26]  O. Diekmann,et al.  The Dynamics of Physiologically Structured Populations , 1986 .

[27]  P. Holgate,et al.  Matrix Population Models. , 1990 .

[28]  Thomas G. Hallam,et al.  Modelling Individuals Employing an Integrated Energy Response: Application to Daphnia , 1990 .

[29]  William D. Stone Age Structured Population Models , 2003 .

[30]  A. De Roos,et al.  Numerical methods for structured population models: The Escalator Boxcar Train , 1988 .

[31]  A. M. de Roos,et al.  The role of physiologically structured population models within a general individual-based modelling perspective , 1992 .

[32]  J. Cushing Nonlinear Matrix Equations and Population Dynamics , 1997 .

[33]  Mats Gyllenberg,et al.  Continuous versus discrete single species population models with adjustable reproductive strategies , 1997 .

[34]  André M. de Roos,et al.  A Gentle Introduction to Physiologically Structured Population Models , 1997 .

[35]  Wilfried Gabriel,et al.  Cannibalism as a life boat mechanism , 1988 .

[36]  G. Webb Theory of Nonlinear Age-Dependent Population Dynamics , 1985 .

[37]  A. M'Kendrick Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.

[38]  B W Kooi,et al.  Numerical methods and parameter estimation of a structured population model with discrete events in the life history. , 2000, Journal of theoretical biology.

[39]  R. Nisbet,et al.  Delay-Differential Equations for Structured Populations , 1997 .

[40]  Christa H. Ratsak Effects of Nais elinguis on the performance of an activated sludge plant , 2001 .

[41]  D. Sulsky,et al.  Numerical solution of structured population models , 1993, Journal of mathematical biology.

[42]  Marek Kimmel,et al.  Comparison of Approaches to Modeling of Cell Population Dynamics , 1993, SIAM J. Appl. Math..

[43]  William Streifer,et al.  A Model for Population Reproducing by Fission , 1971 .

[44]  O. Diekmann,et al.  Exact finite dimensional representations of models for physiologically structured populations , 1989 .

[45]  Odo Diekmann,et al.  Simple mathematical models for cannibalism: A critique and a new approach , 1986 .

[46]  O Angulo,et al.  Numerical integration of autonomous and non-autonomous non-linear size-structured population models. , 2002, Mathematical biosciences.

[47]  Gennady Bocharov,et al.  Structured Population Models, Conservation Laws, and Delay Equations , 2000 .

[48]  W. Gurney,et al.  Simulating spatially and physiologically structured populations , 2001 .

[49]  M Gyllenberg,et al.  Steady-state analysis of structured population models. , 2003, Theoretical population biology.

[50]  R. Durrett,et al.  The Importance of Being Discrete (and Spatial) , 1994 .

[51]  L. Murphy A nonlinear growth mechanism in size structured population dynamics , 1983 .

[52]  Bob W. Kooi,et al.  The dynamics of a tri-trophic food chain with two-component populations from a biochemical perspective , 2002 .

[53]  A. Lasota,et al.  Globally asymptotic properties of proliferating cell populations , 1984, Journal of mathematical biology.

[54]  Azmy S. Ackleh,et al.  An implicit finite difference scheme for the nonlinear size-structured population model , 1997 .

[55]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[56]  A. G. Fredrickson,et al.  A new set of population balance equations for microbial and cell cultures , 2002 .

[57]  Horst R. Thieme,et al.  Mathematics in Population Biology , 2003 .

[58]  R. Nisbet,et al.  Survival and production in variable resource environments , 2000, Bulletin of mathematical biology.

[59]  Morton E. Gurtin,et al.  Non-linear age-dependent population dynamics , 1974 .

[60]  Kazufumi Ito,et al.  A fully discretized approximation scheme for size-structured population models , 1991 .

[61]  Ulf Dieckmann,et al.  Ontogenetic niche shifts and evolutionary branching in size-structured populations , 2002 .

[62]  W. Donachie,et al.  Relationship between Cell Size and Time of Initiation of DNA Replication , 1968, Nature.

[63]  Shripad Tuljapurkar,et al.  Stochastic Matrix Models , 1997 .

[64]  Doraiswami Ramkrishna,et al.  Population Balances: Theory and Applications to Particulate Systems in Engineering , 2000 .

[65]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[66]  G. I. Bell,et al.  Cell growth and division. I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures. , 1967, Biophysical journal.

[67]  Mark Kot,et al.  Elements of Mathematical Ecology , 2001 .

[68]  B W Kooi,et al.  Numerical bifurcation analysis of a tri-trophic food web with omnivory. , 2002, Mathematical biosciences.

[69]  O. Diekmann,et al.  Studying the Dynamics of Structured Population Models: A Versatile Technique and Its Application to Daphnia , 1992, The American Naturalist.

[70]  J. Tyson,et al.  Global asymptotic stability of the size distribution in probabilistic models of the cell cycle , 1985, Journal of mathematical biology.

[71]  Tanya Kostova,et al.  An explicit third‐order numerical method for size‐structured population equations , 2003 .

[72]  F A Milner,et al.  Rapidly converging numerical algorithms for models of population dynamics , 1992, Journal of mathematical biology.

[73]  D. F. Petersen,et al.  Cell growth and division. II. Experimental studies of cell volume distributions in mammalian suspension cultures. , 1967, Biophysical journal.

[74]  B W Kooi,et al.  The role of intracellular components in food chain dynamics. , 2000, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[75]  M. Droop SOME THOUGHTS ON NUTRIENT LIMITATION IN ALGAE 1 , 1973 .

[76]  Sebastiaan A.L.M. Kooijman,et al.  Dynamic Energy and Mass Budgets in Biological Systems , 2000 .