A multiobjective model for passive portfolio management: an application on the S&P 100 index

AbstractIndex tracking seeks to minimize the unsystematic risk component by imitating the movements of a reference index. Partial index tracking only considers a subset of the stocks in the index, enabling a substantial cost reduction in comparison with full tracking. Nevertheless, when heterogeneous investment profiles are to be satisfied, traditional index tracking techniques may need different stocks to build the different portfolios. The aim of this paper is to propose a methodology that enables a fund's manager to satisfy different clients’ investment profiles but using in all cases the same subset of stocks, and considering not only one particular criterion but a compromise between several criteria. For this purpose we use a mathematical programming model that considers the tracking error variance, the excess return and the variance of the portfolio plus the curvature of the tracking frontier. The curvature is not defined for a particular portfolio, but for all the portfolios in the tracking frontie...

[1]  H. Leland.,et al.  Cash Management for Index Tracking , 1995 .

[2]  Bora Aktan,et al.  Time‐varying volatility modelling of Baltic stock markets , 2010 .

[3]  D. Teresienė Lithuanian stock market analysis using a set of Garch models , 2009 .

[4]  Ulrich Derigs,et al.  On a Local-Search Heuristic for a Class of Tracking Error Minimization Problems in Portfolio Management , 2004, Ann. Oper. Res..

[5]  J. Jarrett,et al.  Daily variation and predicting stock market returns for the frankfurter börse (stock market) , 2008 .

[6]  Carlos Romero,et al.  A theorem connecting utility function optimization and compromise programming , 1991, Oper. Res. Lett..

[7]  Massimiliano Marcellino,et al.  Factor Based Index Tracking , 2002 .

[8]  Chorng-Shyong Ong,et al.  Enhanced Index Investing Based on Goal Programming , 2007 .

[9]  Marc Despontin,et al.  Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .

[10]  E. Takeda,et al.  Bicriteria Optimization Problem of Designing an Index Fund , 1995 .

[11]  H. Zimmermann,et al.  A linear model for tracking error minimization , 1999 .

[12]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[13]  Alberto Suárez,et al.  A hybrid optimization approach to index tracking , 2009, Ann. Oper. Res..

[14]  John E. Beasley,et al.  An evolutionary heuristic for the index tracking problem , 2003, Eur. J. Oper. Res..

[15]  Jaap Spronk,et al.  The Relevance of Mcdm for Financial Decisions , 2002 .

[16]  John E. Beasley,et al.  Mixed-integer programming approaches for index tracking and enhanced indexation , 2009, Eur. J. Oper. Res..

[17]  Nico van der Wijst,et al.  Optimal portfolio selection and dynamic benchmark tracking , 2005, Eur. J. Oper. Res..

[18]  S. Focardi,et al.  A methodology for index tracking based on time-series clustering , 2004 .

[19]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[20]  Milan Zeleny,et al.  Multiple Criteria Decision Making (MCDM) , 2004 .

[21]  R. Roll,et al.  A Mean/Variance Analysis of Tracking Error , 1992 .

[22]  Silvano Cincotti,et al.  Clustering of financial time series with application to index and enhanced index tracking portfolio , 2005 .