Atomistic basis for the on–off signaling mechanism in SAM-II riboswitch

Many bacterial genes are controlled by metabolite sensing motifs known as riboswitches, normally located in the 5′ un-translated region of their mRNAs. Small molecular metabolites bind to the aptamer domain of riboswitches with amazing specificity, modulating gene regulation in a feedback loop as a result of induced conformational changes in the expression platform. Here, we report the results of molecular dynamics simulation studies of the S-adenosylmethionine (SAM)-II riboswitch that is involved in regulating translation in sulfur metabolic pathways in bacteria. We show that the ensemble of conformations of the unbound form of the SAM-II riboswitch is a loose pseudoknot structure that periodically visits conformations similar to the bound form, and the pseudoknot structure is only fully formed upon binding the metabolite, SAM. The rate of forming contacts in the unbound form that are similar to that in the bound form is fast. Ligand binding to SAM-II alters the curvature and base-pairing of the expression platform that could affect the interaction of the latter with the ribosome.

[1]  R. Breaker,et al.  The structural and functional diversity of metabolite-binding riboswitches. , 2009, Annual review of biochemistry.

[2]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[3]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[4]  V. Mizrahi,et al.  A Riboswitch Regulates Expression of the Coenzyme B12-Independent Methionine Synthase in Mycobacterium tuberculosis: Implications for Differential Methionine Synthase Function in Strains H37Rv and CDC1551 , 2007, Journal of bacteriology.

[5]  A. Serganov The long and the short of riboswitches. , 2009, Current opinion in structural biology.

[6]  D. Crothers,et al.  The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.

[7]  R. Batey,et al.  Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element* , 2008, Journal of Biological Chemistry.

[8]  R. Breaker,et al.  An mRNA structure that controls gene expression by binding FMN , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. Batey,et al.  Structure of the SAM-II riboswitch bound to S-adenosylmethionine , 2008, Nature Structural &Molecular Biology.

[10]  Zasha Weinberg,et al.  The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. , 2008, RNA.

[11]  Shantenu Jha,et al.  A mechanism for S-adenosyl methionine assisted formation of a riboswitch conformation: a small molecule with a strong arm , 2009, Nucleic acids research.

[12]  R. Breaker,et al.  Control of gene expression by a natural metabolite-responsive ribozyme , 2004, Nature.

[13]  R. Breaker,et al.  Molecular-recognition characteristics of SAM-binding riboswitches. , 2006, Angewandte Chemie.

[14]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[15]  G. Soukup,et al.  Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme , 2006, Nature Structural &Molecular Biology.

[16]  R Lewis,et al.  The rise of antibiotic-resistant infections. , 1995, FDA consumer.

[17]  N. Ban,et al.  Structure of the Eukaryotic Thiamine Pyrophosphate Riboswitch with Its Regulatory Ligand , 2006, Science.

[18]  E. Groisman,et al.  The intricate world of riboswitches. , 2007, Current opinion in microbiology.

[19]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[20]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[21]  Zasha Weinberg,et al.  A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004, Science.

[22]  S. Wijmenga,et al.  Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism. , 2007, RNA.

[23]  A. Ferré-D’Amaré,et al.  Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. , 2006, Structure.

[24]  Donald Hamelberg,et al.  Relating kinetic rates and local energetic roughness by accelerated molecular-dynamics simulations. , 2005, The Journal of chemical physics.

[25]  Jeffrey E. Barrick,et al.  Metabolite-binding RNA domains are present in the genes of eukaryotes. , 2003, RNA.

[26]  H. Schwalbe,et al.  An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Gelfand,et al.  Comparative Genomics of Thiamin Biosynthesis in Procaryotes , 2002, The Journal of Biological Chemistry.

[28]  Jeffrey E. Barrick,et al.  Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria , 2005, Genome Biology.

[29]  M. Gelfand,et al.  Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? , 2003, Nucleic acids research.

[30]  R. Breaker,et al.  Riboswitch Control of Gene Expression in Plants by Splicing and Alternative 3′ End Processing of mRNAs[W][OA] , 2007, The Plant Cell Online.

[31]  A. Serganov,et al.  Structured mRNAs Regulate Translation Initiation by Binding to the Platform of the Ribosome , 2007, Cell.

[32]  P. Nygaard,et al.  Definition of a Second Bacillus subtilis pur Regulon Comprising the pur and xpt-pbuX Operons plus pbuG, nupG (yxjA), and pbuE (ydhL) , 2003, Journal of bacteriology.

[33]  H. Bosshard,et al.  Molecular recognition by induced fit: how fit is the concept? , 2001, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[34]  Evgeny Nudler,et al.  Sensing Small Molecules by Nascent RNA A Mechanism to Control Transcription in Bacteria , 2002, Cell.

[35]  Alexander Schug,et al.  Nonlocal helix formation is key to understanding S-adenosylmethionine-1 riboswitch function. , 2009, Biophysical journal.

[36]  D. Crothers,et al.  The kinetics of ligand binding by an adenine-sensing riboswitch. , 2005, Biochemistry.

[37]  A. Serganov,et al.  Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. , 2004, Chemistry & biology.

[38]  C. W. Hilbers,et al.  New developments in structure determination of pseudoknots , 1998, Biopolymers.

[39]  Gerhard Stock,et al.  Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch , 2009, Nucleic acids research.

[40]  A. Serganov,et al.  Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch , 2009, Nature.

[41]  R. Breaker,et al.  Adenine riboswitches and gene activation by disruption of a transcription terminator , 2004, Nature Structural &Molecular Biology.

[42]  R. Breaker,et al.  Genetic Control by Metabolite‐Binding Riboswitches , 2003, Chembiochem : a European journal of chemical biology.

[43]  Stewart A. Adcock,et al.  Molecular dynamics: survey of methods for simulating the activity of proteins. , 2006, Chemical reviews.

[44]  Thomas E Cheatham,et al.  Simulation and modeling of nucleic acid structure, dynamics and interactions. , 2004, Current opinion in structural biology.

[45]  Jeffrey E. Barrick,et al.  The power of riboswitches. , 2007, Scientific American.

[46]  R. Breaker,et al.  Riboswitches as antibacterial drug targets , 2006, Nature Biotechnology.

[47]  A. Plückthun,et al.  Antigen recognition by conformational selection , 1999, FEBS letters.

[48]  A. Ferré-D’Amaré,et al.  Essential role of an active-site guanine in glmS ribozyme catalysis. , 2007, Journal of the American Chemical Society.

[49]  Alexander D. MacKerell,et al.  Molecular dynamics simulations of nucleic acid-protein complexes. , 2008, Current opinion in structural biology.

[50]  A. Ferré-D’Amaré,et al.  Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase , 2009, Nature Structural &Molecular Biology.

[51]  T. Henkin,et al.  The L box regulon: Lysine sensing by leader RNAs of bacterial lysine biosynthesis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[52]  T. Henkin,et al.  The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram‐positive bacteria , 1998, Molecular microbiology.

[53]  I. Borovok,et al.  Coenzyme B12 Controls Transcription of the Streptomyces Class Ia Ribonucleotide Reductase nrdABS Operon via a Riboswitch Mechanism , 2006, Journal of bacteriology.

[54]  Harald Schwalbe,et al.  Interplay of ‘induced fit’ and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch , 2006, Nucleic acids research.

[55]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[56]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[57]  A. Serganov,et al.  Structural insights into amino acid binding and gene control by a lysine riboswitch , 2008, Nature.

[58]  D. Koshland Application of a Theory of Enzyme Specificity to Protein Synthesis. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[59]  R. Montange,et al.  Riboswitches: emerging themes in RNA structure and function. , 2008, Annual review of biophysics.

[60]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[61]  T. Henkin,et al.  The SMK box is a new SAM-binding RNA for translational regulation of SAM synthetase , 2006, Nature Structural &Molecular Biology.

[62]  Margaret S. Ebert,et al.  An mRNA structure in bacteria that controls gene expression by binding lysine. , 2003, Genes & development.

[63]  Zasha Weinberg,et al.  Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique' , 2009, BMC Genomics.

[64]  A. Ferré-D’Amaré,et al.  Structural Basis of glmS Ribozyme Activation by Glucosamine-6-Phosphate , 2006, Science.

[65]  Gopalakrishnan Bulusu,et al.  MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add A-riboswitch. , 2009, RNA.

[66]  E. Nudler,et al.  The riboswitch control of bacterial metabolism. , 2004, Trends in biochemical sciences.

[67]  G. Soukup,et al.  Riboswitches exert genetic control through metabolite-induced conformational change. , 2004, Current opinion in structural biology.

[68]  R. Montange,et al.  Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine , 2004, Nature.

[69]  H. Schwalbe,et al.  Time-resolved NMR spectroscopy: ligand-induced refolding of riboswitches. , 2009, Methods in molecular biology.

[70]  Adam Roth,et al.  A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain , 2007, Nature Structural &Molecular Biology.

[71]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[72]  G. Church,et al.  Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. , 2003, Genome research.

[73]  J. Šponer,et al.  Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers , 2007 .

[74]  Daniel Svozil,et al.  Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. , 2007, Biophysical journal.

[75]  Mijeong Kang,et al.  Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. , 2009, Molecular cell.

[76]  Ali Nahvi,et al.  An mRNA structure that controls gene expression by binding S-adenosylmethionine , 2003, Nature Structural Biology.

[77]  R. Breaker,et al.  Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. , 2008, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[78]  Vitaly Epshtein,et al.  The riboswitch-mediated control of sulfur metabolism in bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.