Electronic nanotechnology and reconfigurable computing

Chemically assembled electronic nanotechnology (CAEN) is a promising alternative to CMOS for constructing circuits with feature sizes in the tens of nanometers range. In this paper we describe some of the recent advances in CAEN and how they influence the design of digital circuits. We show how reconfigurability supports inexpensive manufacturing. Finally, we describe a molecular latch that overcomes the lack of a viable CAEN-based transistor.

[1]  Seth Copen Goldstein,et al.  NanoFabrics: spatial computing using molecular electronics , 2001, ISCA 2001.

[2]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[3]  R W Keyes,et al.  What Makes a Good Computer Device? , 1985, Science.

[4]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[5]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[6]  Naoki Yokoyama,et al.  Room temperature operation of Si single-electron memory with self-aligned floating dot gate , 1997 .

[7]  Richard J. Carter,et al.  The Teramac Custom Computer: Extending the Limits with Defect Tolerance , 1996, DFT.

[8]  D W Bennett,et al.  Molecular Wires, Switches, and Memories , 2002, Annals of the New York Academy of Sciences.

[9]  Thomas E. Mallouk,et al.  Orthogonal Self‐Assembly on Colloidal Gold‐Platinum Nanorods , 1999 .

[10]  Richard J. Carter,et al.  Defect tolerance on the Teramac custom computer , 1997, Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines Cat. No.97TB100186).

[11]  B. Martin,et al.  DNA‐Directed Assembly of Gold Nanowires on Complementary Surfaces , 2001 .

[12]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[13]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[14]  M. Reed,et al.  Room-Temperature Negative Differential Resistance in Nanoscale Molecular Junctions , 2000 .

[15]  J. P. Sage,et al.  A new RTD-FET logic family , 1999, Proc. IEEE.

[16]  G. Dewey,et al.  30 nm physical gate length CMOS transistors with 1.0 ps n-MOS and 1.7 ps p-MOS gate delays , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[17]  J. Fraser Stoddart,et al.  The Self‐Assembly of a Switchable [2]Rotaxane , 1997 .