An Abaqus implementation of the extended finite element method

Abstract In this paper, we introduce an implementation of the extended finite element method for fracture problems within the finite element software ABAQUSTM. User subroutine ( UEL ) in Abaqus is used to enable the incorporation of extended finite element capabilities. We provide details on the data input format together with the proposed user element subroutine, which constitutes the core of the finite element analysis; however, pre-processing tools that are necessary for an X-FEM implementation, but not directly related to Abaqus, are not provided. In addition to problems in linear elastic fracture mechanics, non-linear frictional contact analyses are also realized. Several numerical examples in fracture mechanics are presented to demonstrate the benefits of the proposed implementation.

[1]  A. Needleman,et al.  A COMPARISON OF METHODS FOR CALCULATING ENERGY RELEASE RATES , 1985 .

[2]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[3]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[4]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[5]  Eugenio Giner,et al.  An improvement of the EDI method in linear elastic fracture mechanics by means of an a posteriori error estimator in G , 2004 .

[6]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[7]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[8]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[9]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[10]  Hans Albert Richard,et al.  Theoretical crack path prediction , 2005 .

[11]  D. Chopp,et al.  Three‐dimensional non‐planar crack growth by a coupled extended finite element and fast marching method , 2008 .

[12]  M. Duflot A study of the representation of cracks with level sets , 2007 .

[13]  R. Shield,et al.  Conservation laws in elasticity of the J-integral type , 1977 .

[14]  Eugenio Giner,et al.  Crack growth in fretting-fatigue problems using the extended finite element method , 2006 .

[15]  Stéphane Bordas,et al.  An extended finite element library , 2007 .

[16]  Eugenio Giner,et al.  Extended Finite Element Method for Fretting Fatigue Crack Propagation , 2008 .

[17]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[18]  Eugenio Giner,et al.  International Journal for Numerical Methods in Engineering , 2009 .

[19]  T. Belytschko,et al.  Vector level sets for description of propagating cracks in finite elements , 2003 .

[20]  Brian Moran,et al.  Crack tip and associated domain integrals from momentum and energy balance , 1987 .

[21]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[22]  Bhushan Lal Karihaloo,et al.  Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the art review , 2003 .

[23]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[24]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[25]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[26]  João Folgado,et al.  III European Conference on Computational Mechanics , 2006 .

[27]  Jean-Herve Prevost,et al.  MODELING QUASI-STATIC CRACK GROWTH WITH THE EXTENDED FINITE ELEMENT METHOD PART II: NUMERICAL APPLICATIONS , 2003 .

[28]  E. Gdoutos Fracture Mechanics: An Introduction , 1993 .

[29]  N. Moës,et al.  Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .

[30]  Eugenio Giner,et al.  Error estimation for the finite element evaluation of G I and G II in mixed-mode linear elastic fracture mechanics , 2005 .

[31]  Ted Belytschko,et al.  X-FEM Toolkit for Automated Crack Onset and Growth Prediction , 2008 .

[32]  Jean-François Remacle,et al.  Substructuring FE-XFE approaches applied to three-dimensional crack propagation , 2008 .

[33]  D. Chopp,et al.  Extended finite element method and fast marching method for three-dimensional fatigue crack propagation , 2003 .

[34]  Yazid Abdelaziz,et al.  Review: A survey of the extended finite element , 2008 .