Detector entanglement: Quasidistributions for Bell-state measurements

Measurements in the quantum domain can exceed classical notions. This concerns fundamental questions about the nature of the measurement process itself, as well as applications, such as their function as building blocks of quantum information processing protocols. In this paper we explore the notion of entanglement for detection devices in theory and experiment. A method is devised that allows one to determine nonlocal quantum coherence of positive-operator-valued measures via negative contributions in a joint distribution that fully describes the measurement apparatus under study. This approach is then applied to experimental data for detectors that ideally project onto Bell states. In particular, we describe the reconstruction of the aforementioned entanglement quasidistributions from raw data and compare the resulting negativities with those expected from theory. Therefore, our method provides a versatile toolbox for analyzing measurements regarding their quantum-correlation features for quantum science and quantum technology.

[1]  N. Gisin,et al.  Entanglement Swapping and Quantum Correlations via Symmetric Joint Measurements. , 2022, Physical review letters.

[2]  Soojoon Lee,et al.  Relation between quantum coherence and quantum entanglement in quantum measurements , 2022, Physical Review A.

[3]  Lijian Zhang,et al.  Direct characterization of coherence of quantum detectors by sequential measurements , 2021, Advanced Photonics.

[4]  C. Silberhorn,et al.  Experimental entanglement characterization of two-rebit states , 2021, 2102.01450.

[5]  Jaehak Lee,et al.  Quantifying coherence of quantum measurements , 2020, New Journal of Physics.

[6]  Y. S. Teo,et al.  Compressively Certifying Quantum Measurements , 2020, 2007.14713.

[7]  Feixiang Xu,et al.  Experimental Quantification of Coherence of a Tunable Quantum Detector. , 2019, Physical review letters.

[8]  W. Vogel,et al.  Quasiprobability distributions for quantum-optical coherence and beyond , 2019, Physica Scripta.

[9]  Marco Barbieri,et al.  Measuring coherence of quantum measurements , 2019, Physical Review Research.

[10]  Alexei Gilchrist,et al.  A resource theory of quantum measurements , 2019, Journal of Physics A: Mathematical and Theoretical.

[11]  Ryuji Takagi,et al.  General Resource Theories in Quantum Mechanics and Beyond: Operational Characterization via Discrimination Tasks , 2019, Physical Review X.

[12]  D. Cavalcanti,et al.  All Sets of Incompatible Measurements give an Advantage in Quantum State Discrimination. , 2019, Physical review letters.

[13]  D. Bruß,et al.  Resource Theory of Coherence Based on Positive-Operator-Valued Measures. , 2018, Physical review letters.

[14]  B Brecht,et al.  Experimental Reconstruction of Entanglement Quasiprobabilities. , 2018, Physical review letters.

[15]  Paul Skrzypczyk,et al.  Robustness of Measurement, Discrimination Games, and Accessible Information. , 2018, Physical review letters.

[16]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[17]  I. Walmsley,et al.  Quasiprobability representation of quantum coherence , 2018, Physical Review A.

[18]  G. H. Dong,et al.  Interpreting quantum coherence through a quantum measurement process , 2017, 1707.05131.

[19]  D. Dong,et al.  Characterization of entangling properties of quantum measurement via two-mode quantum detector tomography using coherent state probes. , 2017, Optics express.

[20]  Marco G. Genoni,et al.  Entangling measurements for multiparameter estimation with two qubits , 2017, 1704.03327.

[21]  J. Sperling,et al.  Conditional Hybrid Nonclassicality. , 2017, Physical review letters.

[22]  Howard M Wiseman,et al.  Experimentally modeling stochastic processes with less memory by the use of a quantum processor , 2017, Science Advances.

[23]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[24]  G. Adesso,et al.  Measures and applications of quantum correlations , 2016, 1605.00806.

[25]  I. Walmsley,et al.  Quantum Correlations from the Conditional Statistics of Incomplete Data. , 2016, Physical review letters.

[26]  Eric Chitambar,et al.  Relating the Resource Theories of Entanglement and Quantum Coherence. , 2015, Physical review letters.

[27]  J. Sperling,et al.  Unified quantification of nonclassicality and entanglement , 2014, 1401.5222.

[28]  J. Sperling,et al.  Multipartite entanglement witnesses. , 2013, Physical review letters.

[29]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[30]  M. Kim,et al.  Experimental demonstration of the bosonic commutation relation via superpositions of quantum operations on thermal light fields. , 2009, Physical review letters.

[31]  Rupert Ursin,et al.  Quantum teleportation and entanglement swapping with linear optics logic gates , 2008, 0809.3689.

[32]  J. Sperling,et al.  Verifying continuous-variable entanglement in finite spaces , 2008, 0809.3197.

[33]  Alessandro Zavatta,et al.  Probing Quantum Commutation Rules by Addition and Subtraction of Single Photons to/from a Light Field , 2007, Science.

[34]  J. P. Dahl,et al.  Entanglement versus negative domains of Wigner functions , 2006 .

[35]  W. Vogel,et al.  Quantum Optics: VOGEL: QUANTUM OPTICS O-BK , 2006 .

[36]  J. Leinaas,et al.  Geometrical aspects of entanglement , 2006, quant-ph/0605079.

[37]  H. Briegel,et al.  Universal , 2020, Definitions.

[38]  R. Prevedel,et al.  Demonstration of a simple entangling optical gate and its use in bell-state analysis. , 2005, Physical review letters.

[39]  J. Calsamiglia,et al.  Computable measure of nonclassicality for light. , 2004, Physical review letters.

[40]  Shengjun Wu,et al.  What is quantum entanglement , 2003 .

[41]  W. Xiang-bin Properties of a beam-splitter entangler with Gaussian input states , 2002, quant-ph/0204082.

[42]  P. Knight,et al.  Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement , 2001, quant-ph/0106136.

[43]  G. Vidal,et al.  LOCAL DESCRIPTION OF QUANTUM INSEPARABILITY , 1998 .

[44]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[45]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[46]  R. Glauber,et al.  Correlation Functions for Coherent Fields , 1965 .

[47]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[48]  Michael Hilgers,et al.  Steering , 2021, Chassis and Axles.

[49]  Jens Eisert,et al.  Tomography of quantum detectors , 2009 .

[50]  D. Cory,et al.  Probing Quantum Commutation Rules by Addition and Subtraction of Single Photons to / from a Light Field , 2007 .

[51]  L. Mandel Non-Classical States of the Electromagnetic Field , 1986 .