Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm.

We demonstrate a CW random distributed feedback Raman fiber laser operating in a 1.2 μm spectral band. The laser generates up to 3.8 W of the quasi-CW radiation at 1175 nm with the narrow spectrum of 1 nm. Conversion efficiency reaches 60%. Up to 1 W is generated at the second Stokes wavelength of 1242 nm. It is shown that the generation spectrum of RDFB Raman fiber laser is much narrower than the spectrum in the system without a weak random feedback.

[1]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[2]  Sergei K. Turitsyn,et al.  Random distributed feedback fiber laser , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[3]  Sergey A. Babin,et al.  Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser , 2007 .

[4]  N. Terry,et al.  An explanation of SRS beam cleanup in graded-index fibers and the absence of SRS beam cleanup in step-index fibers. , 2007, Optics express.

[5]  J R Taylor,et al.  Supercontinuum self-Q-switched ytterbium fiber laser. , 1997, Optics letters.

[6]  Orlando Frazão,et al.  Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain?temperature measurement , 2009 .

[7]  Kevin L. Schroder,et al.  The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers. , 2010, Optics express.

[8]  Diederik S. Wiersma,et al.  Laser physics: Random lasers explained? , 2009 .

[9]  Diederik S. Wiersma,et al.  The physics and applications of random lasers , 2008 .

[10]  A. Fotiadi Random lasers: An incoherent fibre laser , 2010 .

[11]  A. E. Ismagulov,et al.  Turbulence-induced square-root broadening of the Raman fiber laser output spectrum. , 2008, Optics letters.

[12]  S. Babin,et al.  Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback. , 2010, Optics letters.

[13]  A E Bednyakova,et al.  Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics. , 2011, Optics express.

[14]  Roger H. Stolen,et al.  Development of the stimulated Raman spectrum in single-mode silica fibers , 1984 .

[15]  Sergei K. Turitsyn,et al.  Turbulent broadening of optical spectra in ultralong Raman fiber lasers , 2008 .

[16]  N. P. Puente,et al.  Single-mode Er-doped fiber random laser with distributed Bragg grating feedback. , 2009, Optics express.

[17]  C.-J. Chen,et al.  Instability in Raman amplifiers caused by distributed Rayleigh reflection , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[18]  Hui Cao,et al.  Review on latest developments in random lasers with coherent feedback , 2006 .

[19]  Pierre Suret,et al.  Intracavity changes in the field statistics of Raman fiber lasers. , 2011, Optics letters.

[20]  S. Smirnov,et al.  Statistical properties of partially coherent cw fiber lasers. , 2010, Optics letters.

[21]  R. Kashyap,et al.  Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating. , 2009, Optics express.

[22]  S. Babin,et al.  Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation. , 2011, Optics letters.

[23]  O. Frazão,et al.  Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering , 2010 .

[24]  C. D. de Matos,et al.  Random fiber laser. , 2007, Physical review letters.

[25]  A. Fotiadi,et al.  Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber. , 1998, Optics letters.

[26]  M. Mahdi,et al.  Contribution of Rayleigh scattering on Brillouin comb line generation in Raman fiber laser. , 2010, Applied Optics.

[27]  Roman J. B. Dietz,et al.  Co-existence of strongly and weakly localized random laser modes , 2009 .

[28]  S. Babin,et al.  Raman fiber lasers with a random distributed feedback based on Rayleigh scattering , 2010 .

[29]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[30]  Stefan Rotter,et al.  Strong Interactions in Multimode Random Lasers , 2008, Science.