Swift Panchromatic Observations of the Bright Gamma-Ray Burst GRB 050525a

The bright gamma-ray burst GRB 050525a has been detected with the Swift observatory, providing unique multiwavelength coverage from the very earliest phases of the burst. The X-ray and optical/UV afterglow decay light curves both exhibit a steeper slope ~0.15 days after the burst, indicative of a jet break. This jet break time combined with the total gamma-ray energy of the burst constrains the opening angle of the jet to be 3.°2. We derive an empirical "time-lag" redshift from the BAT data of = 0.69 ± 0.02, in good agreement with the spectroscopic redshift of 0.61. Prior to the jet break, the X-ray data can be modeled by a simple power law with index α = -1.2. However, after 300 s the X-ray flux brightens by about 30% compared to the power-law fit. The optical/UV data have a more complex decay, with evidence of a rapidly falling reverse shock component that dominates in the first minute or so, giving way to a flatter forward shock component at later times. The multiwavelength X-ray/UV/optical spectrum of the afterglow shows evidence for migration of the electron cooling frequency through the optical range within 25,000 s. The measured temporal decay and spectral indexes in the X-ray and optical/UV regimes compare favorably with the standard fireball model for gamma-ray bursts assuming expansion into a constant-density interstellar medium.

[1]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[2]  G. Stratta,et al.  Early re-brightening of the afterglow of GRB 050525a , 2005, astro-ph/0506259.

[3]  N. Gehrels,et al.  Bright X-ray Flares in Gamma-Ray Burst Afterglows , 2005, Science.

[4]  Z. Dai,et al.  A Reverse-Shock Model for the Early Afterglow of GRB 050525A , 2005, astro-ph/0506139.

[5]  Bing Zhang,et al.  Model-independent Multivariable Gamma-Ray Burst Luminosity Indicator and Its Possible Cosmological Implications , 2005, astro-ph/0504404.

[6]  B. Gendre,et al.  Decay properties of the X-ray afterglows of Gamma-ray bursts , 2005 .

[7]  M. Feroci,et al.  Probing the Environment in Gamma-Ray Bursts: The Case of an X-Ray Precursor, Afterglow Late Onset, and Wind Versus Constant Density Profile in GRB 011121 and GRB 011211 , 2004, astro-ph/0412589.

[8]  G. Ghirlanda,et al.  The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their νFν Spectrum , 2004, astro-ph/0405602.

[9]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[10]  Brian McLeod,et al.  GRB 021211 as a Faint Analog of GRB 990123: Exploring the Similarities and Differences in the Optical Afterglows , 2004, astro-ph/0405062.

[11]  Bing Zhang,et al.  Gamma-Ray Bursts: Progress, Problems & Prospects , 2003, astro-ph/0311321.

[12]  D. Yonetoku,et al.  Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation , 2003, astro-ph/0309217.

[13]  A. Panaitescu,et al.  A unified treatment of the gamma-ray burst 021211 and its afterglow , 2003, astro-ph/0305446.

[14]  J. Granot,et al.  The Evolution of a Structured Relativistic Jet and Gamma-Ray Burst Afterglow Light Curves , 2003, astro-ph/0303174.

[15]  Bing Zhang,et al.  Gamma-Ray Burst Early Optical Afterglows: Implications for the Initial Lorentz Factor and the Central Engine , 2003, astro-ph/0302525.

[16]  S. R. Kulkarni,et al.  Discovery of Early Optical Emission from GRB 021211 , 2003, astro-ph/0301377.

[17]  Ryan Chornock,et al.  The Early Light Curve of the Optical Afterglow of GRB 021211 , 2003, astro-ph/0302136.

[18]  Z. Dai,et al.  Optical Flash of GRB 990123: Constraints on the Physical Parameters of the Reverse Shock , 2002, astro-ph/0306024.

[19]  N. Masetti,et al.  Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts , 2002, astro-ph/0205230.

[20]  Bing Zhang,et al.  Gamma-Ray Burst Beaming: A Universal Configuration with a Standard Energy Reservoir? , 2001, astro-ph/0112118.

[21]  M. Rees,et al.  Afterglow light curves, viewing angle and the jet structure of γ-ray bursts , 2001, astro-ph/0112083.

[22]  Zhi-Yun Li,et al.  Wind Interaction Models for Gamma-Ray Burst Afterglows: The Case for Two Types of Progenitors , 1999, astro-ph/9908272.

[23]  S. Djorgovski,et al.  The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999 , 1999, Nature.

[24]  J. Rhoads The Dynamics and Light Curves of Beamed Gamma-Ray Burst Afterglows , 1999, astro-ph/9903399.

[25]  G. Gisler,et al.  Observation of contemporaneous optical radiation from a γ-ray burst , 1999, Nature.

[26]  J. P. Norris,et al.  Connection between Energy-dependent Lags and Peak Luminosity in Gamma-Ray Bursts , 1999, astro-ph/9903233.

[27]  S. Djorgovski,et al.  The afterglow, the redshift, and the extreme energetics of the gamma-ray burst 990123 , 1999, astro-ph/9902272.

[28]  T. Piran,et al.  GRB 990123: The Optical Flash and the Fireball Model , 1999, astro-ph/9902009.

[29]  P. Mészáros,et al.  Dynamical Evolution, Light Curves, and Spectra of Spherical and Collimated Gamma-Ray Burst Remnants , 1998, astro-ph/9806016.

[30]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[31]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[32]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[33]  M. Rees,et al.  Optical and Long-Wavelength Afterglow from Gamma-Ray Bursts , 1996, astro-ph/9606043.

[34]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[35]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[36]  J. Dickey,et al.  H I in the Galaxy , 1990 .