MX/G/1 queuing model with state dependent arrival and Second Optional Vacation

This investigation deals with single server state dependent queuing systems, wherein the arrivals of units are in batches and follow the Poisson process with state dependent arrival rates. After availing of the First Regular Vacation (FRV) in a case when there is no customer in the system, the server may also take a Second Optional Vacation (SOV). By using supplementary variable techniques, the probability generating function of the queue length distribution is established to study various performance measures. The maximum entropy approach is also used to find queue length distribution for evaluation of steady state probabilities in all different states. Numerical illustrations are provided to verify the tractability of performance measures obtained analytically.

[1]  Stefan Van Gulck,et al.  Note on the article: Maximum entropy analysis of the M[x]/M/1 queueing system with multiple vacations and server breakdowns , 2008, Comput. Ind. Eng..

[2]  C. D. Litton,et al.  A First Course in Bulk Queues , 1983 .

[3]  Kailash C. Madan,et al.  An M/G/1 queue with second optional service , 1999, Queueing Syst. Theory Appl..

[4]  R. Arumuganathan,et al.  Steady state analysis of a non-Markovian bulk queueing system with overloading and multiple vacations , 2010 .

[5]  P. V. Ushakumari,et al.  On the queueing system , 1998 .

[6]  Demetres D. Kouvatsos,et al.  Maximum entropy and the G/G/1/N queue , 1986, Acta Informatica.

[7]  Naveen Kumar Utilization of idle time in queueing models , 2012 .

[8]  Wen Lea Pearn,et al.  Comparative analysis of a randomized N-policy queue: An improved maximum entropy method , 2011, Expert Syst. Appl..

[9]  Gautam Choudhury,et al.  An M/G/1 queue with an optional second vacation , 2006 .

[10]  Irfan-Ullah Awan,et al.  Performance analysis of a threshold-based discrete-time queue using maximum entropy , 2009, Simul. Model. Pract. Theory.

[11]  Gautam Choudhury SOME ASPECTS OF M/G/1 QUEUE WITH TWO DIFFERENT VACATION TIMES UNDER MULTIPLE VACATION POLICY , 2002 .

[12]  Kailash C. Madan,et al.  A Batch Arrival Queue with Bernoulli Vacation Schedule under Multiple Vacation Policy , 2006 .

[13]  U. Yechiali,et al.  Utilization of idle time in an M/G/1 queueing system Management Science 22 , 1975 .

[14]  R. Kalyanaraman,et al.  A Vacation Queue with Additional Optional Service in Batches , 2009 .

[15]  Madhu Jain,et al.  A discrete-time Geo X /G/1 retrial queueing system with starting failures and optional service , 2010 .

[16]  Wen Lea Pearn,et al.  (Applied Mathematical Modelling,31(10):2199-2212)Optimal Control of the N Policy M/G/1 Queueing System with Server Breakdowns and General Startup Times , 2007 .

[17]  Hideaki Takagi,et al.  Queueing analysis: a foundation of performance evaluation , 1993 .

[18]  Masakiyo Miyazawa,et al.  Decomposition formulas for single server queues with vacations : a unified approach by the rate conservation law , 1994 .

[19]  A. Badamchi Zadeh,et al.  A TWO PHASE QUEUE SYSTEM WITH BERNOULLI FEEDBACK AND BERNOULLI SCHEDULE SERVER VACATION , 2008 .

[20]  Madhu Jain,et al.  Optimal repairable M x /G/1 queue with multi-optional services and Bernoulli vacation , 2010 .

[21]  K. C. Madan,et al.  BATCH ARRIVAL QUEUEING SYSTEM WITH RANDOM BREAKDOWNS AND BERNOULLI SCHEDULE SERVER VACATIONS HAVING GENERAL TIME DISTRIBUTION , 2009 .

[22]  M. Hughes,et al.  Performance Analysis , 2018, Encyclopedia of Algorithms.

[23]  B. T. Doshi,et al.  Queueing systems with vacations — A survey , 1986, Queueing Syst. Theory Appl..

[24]  Wen Lea Pearn,et al.  Steady-state probability of the randomized server control system with second optional service, server breakdowns and startup , 2010 .

[25]  Shunsuke Ihara,et al.  Maximum Entropy Analysis , 1993 .

[26]  M. L. Chaudhry The queueing system MX/G/1 and its ramifications , 1979 .

[27]  John E. Shore,et al.  Information theoretic approximations for M/G/1 and G/G/1 queuing systems , 1982, Acta Informatica.

[28]  Demetres D. Kouvatsos,et al.  A maximum entropy analysis of the M/G/1 and G/M/1 queueing systems at equilibrium , 1983, Acta Informatica.

[29]  Ronald W. Wolff,et al.  Poisson Arrivals See Time Averages , 1982, Oper. Res..

[30]  J. Medhi,et al.  A Single Server Poisson Input Queue with a Second Optional Channel , 2002, Queueing Syst. Theory Appl..

[31]  Zhengting Hou,et al.  Performance analysis of MAP/G/1 queue with working vacations and vacation interruption , 2011 .

[32]  A. E. Ferdinand A statistical mechanical approach to systems analysis , 1970 .

[33]  Kuo-Hsiung Wang,et al.  Maximum entropy analysis of the M[x]/M/1 queueing system with multiple vacations and server breakdowns , 2007, Comput. Ind. Eng..