Projector preconditioning and transformation of basis in FETI-DP algorithms for contact problems

AbstractTwo strategies, using edge averages, for FETI-DP (dual-primal finite element tearing and interconnecting) methods for contact problems are considered. The first one is a preconditioning technique by a conjugate projector, where the Lagrange multipliers corresponding to the variables of the coinciding edges are aggregated. The second one is an explicit transformation of basis introducing edge averages as new, additional primal variables. It is shown that both methods iterate in the same space and thus have the same rate of convergence. The theoretical result is confirmed by the solution of a model boundary variational inequality.

[1]  Zdenek Dostál,et al.  Projector preconditioning for partially bound‐constrained quadratic optimization , 2007, Numer. Linear Algebra Appl..

[2]  Linz,et al.  Solving the Signorini Problem on the Basis of Domain Decomposition Techniques , .

[3]  Z. Dostál,et al.  A scalable FETI-DP algorithm for a coercive variational inequality , 2005 .

[4]  Olof B. Widlund,et al.  An Analysis of a FETI-DP Algorithm on Irregular Subdomains in the Plane , 2008, SIAM J. Numer. Anal..

[5]  Oliver Rheinbach,et al.  Parallel Iterative Substructuring in Structural Mechanics , 2009 .

[6]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[7]  Olof B. Widlund,et al.  FETI‐DP, BDDC, and block Cholesky methods , 2006 .

[8]  Axel Klawonn,et al.  Inexact FETI‐DP methods , 2007 .

[9]  Joachim Schöberl,et al.  Minimizing Quadratic Functions Subject to Bound Constraints with the Rate of Convergence and Finite Termination , 2005, Comput. Optim. Appl..

[10]  Olof B. Widlund,et al.  Dual‐primal FETI methods for linear elasticity , 2006 .

[11]  Olof B. Widlund,et al.  Dual and dual-primal FETI methods for elliptic problems with discontinuous co-efficients in three dimensions , 2001 .

[12]  Jan Mandel,et al.  On the convergence of a dual-primal substructuring method , 2000, Numerische Mathematik.

[13]  Olof B. Widlund,et al.  Selecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions , 2005 .

[14]  D. O’Leary A generalized conjugate gradient algorithm for solving a class of quadratic programming problems , 1977 .

[15]  A. Ruszczynski,et al.  Nonlinear Optimization , 2006 .

[16]  R. Nicolaides Deflation of conjugate gradients with applications to boundary value problems , 1987 .

[17]  S. Nepomnyaschikh,et al.  Domain Decomposition Methods , 2007 .

[18]  Axel Klawonn,et al.  A Parallel Implementation of Dual-Primal FETI Methods for Three-Dimensional Linear Elasticity Using a Transformation of Basis , 2006, SIAM J. Sci. Comput..

[19]  Z. Dostál Conjugate gradient method with preconditioning by projector , 1988 .

[20]  Luca F. Pavarino,et al.  Spectral element FETI-DP and BDDC preconditioners with multi-element subdomains , 2008 .

[21]  A. Klawonn,et al.  Highly scalable parallel domain decomposition methods with an application to biomechanics , 2010 .

[22]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[23]  Panayot S. Vassilevski,et al.  Monotone multigrid methods based on element agglomeration coarsening away from the contact boundary for the Signorini's problem , 2004, Numer. Linear Algebra Appl..

[24]  Zdenek Dostl Optimal Quadratic Programming Algorithms: With Applications to Variational Inequalities , 2009 .

[25]  C. Farhat,et al.  A scalable dual-primal domain decomposition method , 2000, Numer. Linear Algebra Appl..

[26]  W. Greub Linear Algebra , 1981 .

[27]  Olof B. Widlund,et al.  DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .

[28]  Zdenek Dostál,et al.  Box Constrained Quadratic Programming with Proportioning and Projections , 1997, SIAM J. Optim..

[29]  Ying Xiong Nonlinear Optimization , 2014 .

[30]  A. Klawonn,et al.  Robust FETI-DP methods for heterogeneous three dimensional elasticity problems , 2007 .