Characterization of fiber optic Cerenkov radiation sensor for detecting neutrons

Cerenkov radiation can be observed easily as a shimmer of blue light from the water in boiling- and pressurized-water reactors, or spent fuel storage pools. In this research, we fabricated the fiber-optic Cerenkov radiation sensor using a Gdfoil, rutile crystal and optical fiber for detecting neutrons. Also, the reference sensor for measuring background gammarays was fabricated with the rutile crystal and optical fiber. The neutron fluxes could be obtained by measuring the signal difference between two sensors. To characterize the fiber-optic Cerenkov radiation sensor, we measured neutron fluxes using a Cf-252 neutron source according to depths of polyethylene. As the results, the counts of fiber-optic Cerenkov radiation sensor were higher than those of reference sensor due to additional interactions between Gd-foil and neutrons. Also, the counts of Cerenkov radiation decreased with increasing polyethylene thickness. It is anticipated that the novel and simple fiber-optic Cerenkov radiation sensor using the Cerenkov effect can be widely used to detect the neutrons in hazardous nuclear facilities.