Observation of Ramsey fringes using stimulated Raman transitions in a laser-cooled continuous rubidium atomic beam

We performed the Ramsey experiment of optical separated oscillatory fields based on a cold continuous $$^{87}\hbox {Rb}$$87Rb atomic beam. The beam had a free evolution time of 3.4 ms over a short interaction-zone separation of 42 mm, producing a central Raman–Ramsey fringe with a linewidth of 146 Hz (full width at half maximum). This Raman–Ramsey interferometer based on an atomic beam offers a promising solution for developing a highly stable, compact atomic clock.

[1]  Norman F. Ramsey,et al.  A Molecular Beam Resonance Method with Separated Oscillating Fields , 1950 .

[2]  Jon H. Shirley,et al.  A new cavity configuration for cesium beam primary frequency standards , 1988 .

[4]  Cornell,et al.  Low-Velocity Intense Source of Atoms from a Magneto-optical Trap. , 1996, Physical review letters.

[5]  Andreas Bauch,et al.  Performance of the PTB reconstructed primary clock CS1 and an estimate of its current uncertainty , 1998 .

[6]  H. Xue,et al.  Note: Generation of Raman laser beams based on a sideband injection-locking technique using a fiber electro-optical modulator. , 2013, The Review of scientific instruments.

[7]  S. Ezekiel,et al.  Precision studies of stimulated-resonance Raman interactions in an atomic beam , 1986 .

[8]  J. Guéna,et al.  Progress in atomic fountains at LNE-SYRTE , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  Versatile compact atomic source for high-resolution dual atom interferometry , 2007, 0705.4544.

[10]  R. Wynands,et al.  Atomic fountain clocks , 2005 .

[11]  M. Shahriar,et al.  Observation of query pulse length dependent Ramsey interference in rubidium vapor using pulsed Raman excitation. , 2011, Optics express.

[12]  Zach DeVito,et al.  Opt , 2017 .

[13]  Sang Eon Park,et al.  Generation of a slow and continuous cesium atomic beam for an atomic clock , 2002 .

[14]  S. Abend,et al.  Self-alignment of a compact large-area atomic Sagnac interferometer , 2012 .

[15]  P. Altin,et al.  85Rb tunable-interaction Bose-Einstein condensate machine. , 2010, The Review of scientific instruments.

[16]  W. Ertmer,et al.  Atom lithography with a cold, metastable neon beam , 1999 .

[17]  Shaoul Ezekiel,et al.  Observation of Ramsey Fringes Using a Stimulated, Resonance Raman Transition in a Sodium Atomic Beam , 1982 .

[18]  A. Fioretti,et al.  Optimized production of large Bose Einstein Condensates , 2006, quant-ph/0602010.

[19]  W. Buell Laser-pumped and laser-cooled atomic clocks for space applications , 1998 .

[20]  André Clairon,et al.  Ramsey resonance in a zacharias fountain , 1991 .

[21]  C. Bord,et al.  Atomic clocks and inertial sensors , 2002 .

[22]  D. Halford,et al.  Evaluation and Operation of Atomic Beam Tube Frequency Standards Using Time Domain Velocity Selection Modulation , 1973 .

[24]  Chu,et al.  Theoretical analysis of velocity-selective Raman transitions. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  Steven Chu,et al.  High-brightness atom source for atomic fountains , 2001 .

[26]  Shaoul Ezekiel,et al.  Ac Stark shifts in a two-zone Raman interaction , 1989 .

[27]  Ho Seong Lee,et al.  Toward a cesium frequency standard based on a continuous slow atomic beam: preliminary results , 2001, IEEE Trans. Instrum. Meas..

[28]  A cold 87 Rb atomic beam , 2011 .

[29]  P Bouyer,et al.  Microwave signal generation with optical injection locking. , 1996, Optics letters.

[30]  Shaoul Ezekiel,et al.  Semiconductor laser excitation of Ramsey fringes by using a Raman transition in a cesium atomic beam , 1993 .

[31]  H. Metcalf,et al.  Atom lithography with metastable helium , 2010 .

[32]  T. Gustavson,et al.  Rotation sensing with a dual atom-interferometer Sagnac gyroscope , 2000 .

[33]  Jon H. Shirley,et al.  NIST-F1: recent improvements and accuracy evaluations , 2005 .

[34]  G. Theobald,et al.  Frequency shifts in cesium beam clocks induced by microwave leakages , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[35]  André Clairon,et al.  A cold atom clock in absence of gravity , 1998 .

[36]  Wolfgang Ketterle,et al.  Large atom number Bose-Einstein condensate machines , 2006 .

[37]  Alain Joyet,et al.  Improvement of the frequency stability below the dick limit with a continuous atomic fountain clock , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[38]  M. S. Shahriar,et al.  Demonstration of Raman–Ramsey fringes using time delayed optical pulses in rubidium vapor , 2008 .

[39]  J. Guéna,et al.  Continuous beams of cold atoms for space applications , 2006 .