A Meshless Method for the Numerical Solution of a Two-Dimension IHCP

This paper uses the collocation method and radial basis functions (RBFs) to analyze the solution of a two-dimension inverse heat conduction problem (IHCP). The accuracy of the method is tested in terms of Error and RMS errors. Also, the stability of the technique is investigated by perturbing the additional specification data by increasing the amounts of random noise. The results of numerical experiments are compared with the analytical solution in illustrative examples to confirm the accuracy and efficiency of the presented scheme.

[1]  An inverse solution for the steady temperature field within a solidified layer , 1984 .

[2]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[3]  A. Rieder Keine Probleme mit Inversen Problemen , 2003 .

[4]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[5]  Derek B. Ingham,et al.  Application of the boundary element method to inverse heat conduction problems , 1996 .

[6]  Wu Zong-min,et al.  Radial Basis Function Scattered Data Interpolation and the Meshless Method of Numerical Solution of PDEs , 2002 .

[7]  Siraj-ul-Islam,et al.  Application of meshfree collocation method to a class of nonlinear partial differential equations. , 2009 .

[8]  Felix E. Browder,et al.  The One-Dimensional Heat Equation , 1984 .

[9]  Jichun Li,et al.  Application of radial basis meshless methods to direct and inverse biharmonic boundary value problems , 2004 .

[10]  Somchart Chantasiriwan,et al.  An algorithm for solving multidimensional inverse heat conduction problem , 2001 .

[11]  Hans-Jürgen Reinhardt,et al.  A NUMERICAL METHOD FOR THE SOLUTION OF TWO-DIMENSIONAL INVERSE HEAT CONDUCTION PROBLEMS , 1991 .

[12]  Saeed Kazem,et al.  A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation , 2011 .

[13]  R. Rahmani,et al.  Estimation of boundary conditions in the presence of unknown moving boundary caused by ablation , 2011 .

[14]  E. Kansa,et al.  Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .

[15]  J. R. Howell,et al.  INVERSE BOUNDARY DESIGN CONDUCTION-RADIATION PROBLEM IN IRREGULAR TWO-DIMENSIONAL DOMAINS , 2003 .

[16]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[17]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[18]  Saeed Kazem,et al.  Radial basis functions method for solving of a non-local boundary value problem with Neumann’s boundary conditions , 2012 .

[19]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[20]  Y. Hon,et al.  A Meshless Computational Method For Solving Inverse Heat Conduction Problems , 2002 .

[21]  A. Esfahani,et al.  A numerical solution of a two-dimensional IHCP , 2013 .

[22]  I. Nowak,et al.  Application of the homotopy perturbation method for the solution of inverse heat conduction problem , 2012 .

[23]  A GENERAL SPACE MARCHING ALGORITHM FOR THE SOLUTION OF TWO-DIMENSIONAL BOUNDARY INVERSE HEAT CONDUCTION PROBLEMS , 1998 .

[24]  O. Alifanov Inverse heat transfer problems , 1994 .

[25]  K. Hoffmann,et al.  A fitting algorithm for solving inverse problems of heat conduction , 2010 .

[26]  A K Louis,et al.  Approximate inverse for a one-dimensional inverse heat conduction problem , 2000 .

[27]  H. Ding,et al.  Solution of partial differential equations by a global radial basis function-based differential quadrature method , 2004 .

[28]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[29]  Mehdi Dehghan,et al.  A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions , 2009, Numerical Algorithms.

[30]  Mehdi Dehghan,et al.  Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions , 2006, Math. Comput. Model..

[31]  B. Blackwell,et al.  Inverse Heat Conduction: Ill-Posed Problems , 1985 .

[32]  Siraj-ul-Islam,et al.  A meshfree method for the numerical solution of the RLW equation , 2009 .

[33]  Daniel Lesnic,et al.  The Decomposition Approach to Inverse Heat Conduction , 1999 .

[34]  J. Baumeister Stable solution of inverse problems , 1987 .

[35]  Michael A. Golberg,et al.  Some recent results and proposals for the use of radial basis functions in the BEM , 1999 .

[36]  Felix E. Browder,et al.  The One-Dimensional Heat Equation: Preface , 1984 .

[37]  Jichun Li,et al.  A radial basis meshless method for solving inverse boundary value problems , 2004 .

[38]  Somchart Chantasiriwan,et al.  Comparison of three sequential function specification algorithms for the inverse heat conduction problem , 1999 .

[39]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .