Predictive Modelling of Heterogeneous Sequence Collections by Topographic Ordering of Histories
暂无分享,去创建一个
[1] Teuvo Kohonen,et al. In: Self-organising Maps , 1995 .
[2] Teuvo Kohonen,et al. Self-Organizing Maps , 2010 .
[3] Naren Ramakrishnan,et al. Mining scientific data , 2001, Adv. Comput..
[4] Olli Simula,et al. A Self-Organizing Map for Clustering Probabilistic Models , 1999 .
[5] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[6] Gilles Celeux,et al. A Component-Wise EM Algorithm for Mixtures , 2001, 1201.5913.
[7] Nicolas Le Roux,et al. Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.
[8] S. Renals,et al. Experimental evaluation of latent variable models for dimensionality reduction , 1998, Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No.98TH8378).
[9] Ramesh R. Sarukkai,et al. Link prediction and path analysis using Markov chains , 2000, Comput. Networks.
[10] Pragya Agarwal,et al. Self-Organising Maps , 2008 .
[11] Geoffrey E. Hinton,et al. Global Coordination of Local Linear Models , 2001, NIPS.
[12] Thomas L. Griffiths,et al. Parametric Embedding for Class Visualization , 2004, Neural Computation.
[13] Peter Tiño,et al. A generative probabilistic approach to visualizing sets of symbolic sequences , 2004, KDD '04.
[14] Carsten Peterson,et al. A New Method for Mapping Optimization Problems Onto Neural Networks , 1989, Int. J. Neural Syst..
[15] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[16] Carl Tim Kelley,et al. Iterative methods for optimization , 1999, Frontiers in applied mathematics.
[17] Ata Kabán,et al. A Combined Latent Class and Trait Model for the Analysis and Visualization of Discrete Data , 2001, IEEE Trans. Pattern Anal. Mach. Intell..
[18] G. McLachlan,et al. The EM Algorithm and Extensions: Second Edition , 2008 .
[19] Christopher M. Bishop,et al. Neural networks for pattern recognition , 1995 .
[20] Christopher M. Bishop,et al. GTM: The Generative Topographic Mapping , 1998, Neural Computation.
[21] Joachim M. Buhmann,et al. Competitive learning algorithms for robust vector quantization , 1998, IEEE Trans. Signal Process..
[22] Christopher M. Bishop,et al. Developments of the generative topographic mapping , 1998, Neurocomputing.
[23] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[24] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[25] Samy Bengio,et al. Theme Topic Mixture Model: A Graphical Model for Document Representation , 2004 .
[26] Thomas Hofmann,et al. ProbMap - A probabilistic approach for mapping large document collections , 2000, Intell. Data Anal..
[27] Padhraic Smyth,et al. Model-Based Clustering and Visualization of Navigation Patterns on a Web Site , 2003, Data Mining and Knowledge Discovery.
[28] T. Kohonen,et al. Bibliography of Self-Organizing Map SOM) Papers: 1998-2001 Addendum , 2003 .
[29] Samuel Kaski,et al. Bibliography of Self-Organizing Map (SOM) Papers: 1981-1997 , 1998 .
[30] Jiann-Ming Wu,et al. Independent component analysis using Potts models , 2001, IEEE Trans. Neural Networks.
[31] Zoubin Ghahramani,et al. Optimization with EM and Expectation-Conjugate-Gradient , 2003, ICML.
[32] Ata Kabán,et al. Sequential Activity Profiling: Latent Dirichlet Allocation of Markov Chains , 2005, Data Mining and Knowledge Discovery.
[33] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[34] Wray L. Buntine. Variational Extensions to EM and Multinomial PCA , 2002, ECML.
[35] Ata Kabán. A scalable generative topographic mapping for sparse data sequences , 2005, International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II.
[36] Hagai Attias. Learning in high dimensions: modular mixture models , 2001, AISTATS.