Proteome research: Complementarity and limitations with respect to the RNA and DNA worlds

A methodological overview of proteome analysis is provided along with details of efforts to achieve high‐throughput screening (HTS) of protein samples derived from two‐dimensional electrophoresis gels. For both previously sequenced organisms and those lacking significant DNA sequence information, mass spectrometry has a key role to play in achieving HTS. Prototype robotics designed to conduct appropriate chemistries and deliver 700–1000 protein (genes) per day to batteries of mass spectrometers or liquid chromatography (LC)‐based analyses are well advanced, as are efforts to produce high density gridded arrays containing > 1000 proteins on a single matrix assisted laser desorption ionisation/time‐of‐flight (MALDI‐TOF) sample stage. High sensitivity HTS of proteins is proposed by employing principally mass spectrometry in an hierarchical manner: (i) MALDI‐TOF‐mass spectrometry (MS) on at least 1000 proteins per day; (ii) electrospray ionisation (ESI)/MS/MS for analysis of peptides with respect to predicted fragmentation patterns or by sequence tagging; and (iii) ESI/MS/MS for peptide sequencing. Genomic sequences when complemented with information derived from hybridisation assays and proteome analysis may herald in a new era of holistic cellular biology. The current preoccupation with the absolute quantity of gene‐product (RNA and/or protein) should move backstage with respect to more molecularly relevant parameters, such as: molecular half‐life; synthesis rate; functional competence (presence or absence of mutations); reaction kinetics; the influence of individual gene‐products on biochemical flux; the influence of the environment, cell‐cycle, stress and disease on gene‐products; and the collective roles of multigenic and epigenetic phenomena governing cellular processes. Proteome analysis is demonstrated as being capable of proceeding independently of DNA sequence information and aiding in genomic annotation. Its ability to confirm the existence of gene‐products predicted from DNA sequence is a major contribution to genomic science. The workings of software engines necessary to achieve large‐scale proteome analysis are outlined, along with trends towards miniaturisation, analyte concentration and protein detection independent of staining technologies. A challenge for proteome analysis into the future will be to reduce its dependence on two‐dimensional (2‐D) gel electrophoresis as the preferred method of separating complex mixtures of cellular proteins. Nonetheless, proteome analysis already represents a means of efficiently complementing differential display, high density expression arrays, expressed sequence tags, direct or subtractive hybridisation, chromosomal linkage studies and nucleic acid sequencing as a problem solving tool in molecular biology.

[1]  M. Perrot,et al.  Two‐dimensional gel protein database of Saccharomyces cerevisiae , 1996, Electrophoresis.

[2]  M R Wilkins,et al.  Cross‐species identification of proteins separated by two‐dimensional gel electrophoresis using matrix‐assisted laser desorption ionisation/time‐of‐flight mass spectrometry and amino acid composition , 1995, Electrophoresis.

[3]  J. Celis,et al.  Reference points for comparisons of two‐dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions , 1994, Electrophoresis.

[4]  A. Galat,et al.  Amino acid compositions of proteins and their identities , 1995, Electrophoresis.

[5]  M. Mann,et al.  Automation of micro‐preparation and enzymatic cleavage of gel electrophoretically separated proteins , 1995, FEBS letters.

[6]  Joachim Klose,et al.  Two‐dimensional electrophoresis of proteins: An updated protocol and implications for a functional analysis of the genome , 1995, Electrophoresis.

[7]  R D Appel,et al.  The SWISS-2DPAGE database of two-dimensional polyacrylamide gel electrophoresis. , 1994, Nucleic acids research.

[8]  E. Müller,et al.  Identification of human myocardial proteins separated by two‐dimensional electrophoresis using an effective sample preparation for mass spectrometry , 1996, Electrophoresis.

[9]  C S McLaughlin,et al.  Protein identifications for a Saccharomyces cerevisiae protein database , 1994, Electrophoresis.

[10]  D F Hochstrasser,et al.  Development of polyacrylamide gels that improve the separation of proteins and their detection by silver staining. , 1988, Analytical biochemistry.

[11]  D. Hochstrasser,et al.  A nonlinear wide‐range immobilized pH gradient for two‐dimensional electrophoresis and its definition in a relevant pH scale , 1993, Electrophoresis.

[12]  H. Hilbert,et al.  Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. , 1996, Nucleic acids research.

[13]  A. Blomberg,et al.  Protein expression during exponential growth in 0.7 M NaCl medium of Saccharomyces cerevisiae. , 1996, FEMS microbiology letters.

[14]  I. Lefkovits,et al.  The amino acid composition of 350 lymphocyte proteins. , 1994, Molecular immunology.

[15]  D. Rickwood,et al.  The heterogeneity of mouse-chromatin nonhistone proteins as evidenced by two-dimensional polyacrylamide-gel electrophoresis and ion-exchange chromatography. , 1974, European journal of biochemistry.

[16]  G. Shaw,et al.  Rapid identification of proteins. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. Fleischmann,et al.  Strategies for whole microbial genome sequencing and analysis , 1997, Electrophoresis.

[18]  J. Yates,et al.  Peer Reviewed: Mining Genomes with MS , 1996 .

[19]  P. Righetti,et al.  Conventional isoelectric focusing and immobilized pH gradients in ‘macroporous’ polyacrylamide gels , 1993, Electrophoresis.

[20]  D. Hochstrasser,et al.  Improving the detection of proteins after transfer to polyvinylidene difluoride membranes , 1992, Electrophoresis.

[21]  S. Patterson,et al.  Comparison of in‐gel and on‐membrane digestion methods at low to sub‐pmol level for subsequent peptide and fragment‐ion mass analysis using matrix‐assisted laser‐desorption/ionization mass spectrometry , 1997, Electrophoresis.

[22]  P. Wirth,et al.  Staining methods in gel electrophoresis, including the use of multiple detection methods. , 1995, Journal of chromatography. A.

[23]  F. Neidhardt,et al.  Levels of major proteins of Escherichia coli during growth at different temperatures , 1979, Journal of bacteriology.

[24]  T. Hunkapiller,et al.  Peptide mass maps: a highly informative approach to protein identification. , 1993, Analytical biochemistry.

[25]  H. Leffers,et al.  Human cellular protein patterns and their link to genome DNA sequence data: usefulness of two‐dimensional gel electrophoresis and microsequencing , 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[26]  A. Shevchenko,et al.  Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry , 1996, Nature.

[27]  Howard M. Goodman,et al.  High resolution two-dimensional electrophoresis of basic as well as acidic proteins , 1977, Cell.

[28]  J. Fausnaugh,et al.  Amino acid analysis on polyvinylidene difluoride membranes. , 1989, Analytical biochemistry.

[29]  F. Neidhardt,et al.  Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli , 1987, Journal of bacteriology.

[30]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[31]  P. Haynes,et al.  Applications of automated amino acid analysis using 9-fluorenylmethyl chloroformate. , 1991, Journal of chromatography.

[32]  T. Benjamin,et al.  Micropreparative immobilized pH gradient two‐dimensional electrophoresis in combination with protein microsequencing for the analysis of human liver proteins , 1995, Electrophoresis.

[33]  E Fleck,et al.  The construction of the World Wide Web‐accessible myocardial two‐dimensional gel electrophoresis protein database “HEART‐2DPAGE”: A practical approach , 1996, Electrophoresis.

[34]  F Hillenkamp,et al.  Mass spectrometric analysis of blotted proteins after gel electrophoretic separation by matrix‐assisted laser desorption/ionization , 1992, Electrophoresis.

[35]  J. Yates,et al.  Identifying the major proteome components of Haemophilus influenzae type‐strain NCTC 8143 , 1997, Electrophoresis.

[36]  R. Aebersold,et al.  High sensitivity identification of proteins by electrospray ionization tandem mass spectrometry: Initial com‐ parison between an ion trap mass spectrometer and a triple quadrupole mass spectrometer , 1997, Electrophoresis.

[37]  Olivier Golaz,et al.  Federated two‐dimensional electrophoresis database: A simple means of publishing two‐dimensional electrophoresis data , 1996, Electrophoresis.

[38]  P. Jenö,et al.  Internal sequences from proteins digested in polyacrylamide gels. , 1995, Analytical biochemistry.

[39]  M. Wilm,et al.  Error-tolerant identification of peptides in sequence databases by peptide sequence tags. , 1994, Analytical chemistry.

[40]  M R Wilkins,et al.  Identification of proteins by their amino acid composition: An evaluation of the method , 1996, Electrophoresis.

[41]  A. Görg,et al.  Very alkaline immobilized pH gradients for two‐dimensional electrophoresis of ribosomal and nuclear proteins , 1997, Electrophoresis.

[42]  J. Burstin,et al.  Analysis of scaling methods to minimize experimental variations in two‐dimensional electrophoresis quantitative data: Application to the comparison of maize inbred lines , 1993, Electrophoresis.

[43]  M. Wilm,et al.  Analytical properties of the nanoelectrospray ion source. , 1996, Analytical chemistry.

[44]  H. Gould,et al.  Tissue and species specificity of non-histone chromatin proteins , 1973 .

[45]  P. Højrup,et al.  Rapid identification of proteins by peptide-mass fingerprinting , 1993, Current Biology.

[46]  M. Zivy,et al.  Amino acid analysis of proteins separated by two‐dimensional electrophoresis in maize: Isoform detection and function identification , 1996, Electrophoresis.

[47]  Ron D. Appel,et al.  Protein identification with sequence tags , 1996, Current Biology.

[48]  S. Kaufmann,et al.  Secreted antigens of Mycobacterium tuberculosis: characterization with T lymphocytes from patients and contacts after two-dimensional separation. , 1992, The Journal of infectious diseases.

[49]  S. Kjelleberg,et al.  Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956 , 1992, Journal of bacteriology.

[50]  E. Müller,et al.  High‐performance human myocardial two‐dimensional electrophoresis database: Edition 1996 , 1996, Electrophoresis.

[51]  Identification of a conditionally essential heat shock protein in Escherichia coli. , 1994, Biochimica et biophysica acta.

[52]  J. Vandekerckhove,et al.  Protein-electroblotting and -microsequencing strategies in generating protein data bases from two-dimensional gels. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Karl Sigmund,et al.  What is life? The next fifty years , 1996, Complex..

[54]  James I. Garrels,et al.  Yeast Protein database (YPD): a database for the complete proteome of Saccharomyces cerevisiae , 1997, Nucleic Acids Res..

[55]  Bruce Futcher,et al.  Proteome studies of Saccharomyces cerevisiae: Identification and characterization of abundant proteins , 1997, Electrophoresis.

[56]  M. Mann A shortcut to interesting human genes: peptide sequence tags, expressed-sequence tags and computers. , 1996, Trends in biochemical sciences.

[57]  D. Hochstrasser,et al.  From Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional Electrophoresis and Arnino Acid Analysis , 1996, Bio/Technology.

[58]  O. Ohara,et al.  Towards a proteome project of cyanobacterium Synechocystis sp. strain PCC6803: Linking 130 protein spots with their respective genes , 1997, Electrophoresis.

[59]  L. Hjelmeland,et al.  Electrophoresis in gels containing zwitterionic groups , 1981 .

[60]  P. Højrup,et al.  Use of mass spectrometric molecular weight information to identify proteins in sequence databases. , 1993, Biological mass spectrometry.

[61]  R D Appel,et al.  A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. , 1994, Trends in biochemical sciences.

[62]  S. Patterson From electrophoretically separated protein to identification: strategies for sequence and mass analysis. , 1994, Analytical biochemistry.

[63]  H. Leffers,et al.  The human keratinocyte two‐dimensional gel protein database: Update 1993 , 1993, Electrophoresis.

[64]  E Carafoli,et al.  Protein identification in DNA databases by peptide mass fingerprinting , 1994, Protein science : a publication of the Protein Society.

[65]  M. Quadroni,et al.  Analysis of global responses by protein and peptide fingerprinting of proteins isolated by two-dimensional gel electrophoresis. Application to the sulfate-starvation response of Escherichia coli. , 1996, European journal of biochemistry.

[66]  G. Becker,et al.  Protein mass spectrometry: applications to analytical biotechnology. , 1995, Journal of chromatography. A.

[67]  N. Xuong,et al.  A response of protein synthesis to temperature shift in the yeast Saccharomyces cerevisiae. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[68]  E. Müller,et al.  Resolution power of two‐dimensional electrophoresis and identification of proteins from gels , 1996, Electrophoresis.

[69]  J. Gall,et al.  Human Genome Sequencing , 1986, Science.

[70]  T. Okumura,et al.  Asparaginyl endopeptidase mapping of proteins with subsequent matrix-assisted laser desorption/ionization mass spectrometry. , 1995, Rapid communications in mass spectrometry : RCM.

[71]  I. Humphery-Smith,et al.  Proteomic ‘contigs’ of Ochrobactrum anthropi, application of extensive pH gradients , 1997, Electrophoresis.

[72]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[73]  F. Neidhardt,et al.  Analysis of proteins synthesized by Salmonella typhimurium during growth within a host macrophage , 1993, Journal of bacteriology.

[74]  P. Roepstorff,et al.  Identification of proteins in polyacrylamide gels by mass spectrometric peptide mapping combined with database search. , 1994, Biological mass spectrometry.

[75]  S. Kato,et al.  Construction of a human full-length cDNA bank. , 1994, Gene.

[76]  F. Lottspeich,et al.  Blotting efficiency investigated by using two‐dimensional electrophoresis, hydrophobic membranes and proteins from different sources , 1990, Electrophoresis.

[77]  P. Haynes,et al.  Amino acid analysis using derivatisation with 9-fluorenylmethyl chloroformate and reversed-phase high-performance liquid chromatography. , 1991, Journal of chromatography.

[78]  R. Aebersold,et al.  Mass spectrometric approaches for the identification of gel‐separated proteins , 1995, Electrophoresis.

[79]  R. Bank,et al.  Amino acid analysis by reverse-phase high-performance liquid chromatography: improved derivatization and detection conditions with 9-fluorenylmethyl chloroformate. , 1996, Analytical biochemistry.

[80]  D. Rickwood,et al.  Gel electrophoresis of proteins: a practical approach , 1981 .

[81]  M. Wilkins,et al.  Improved high-performance liquid chromatography of amino acids derivatised with 9-fluorenylmethyl chloroformate , 1996 .

[82]  P. Roepstorff,et al.  Mass spectrometry in protein studies from genome to function. , 1997, Current opinion in biotechnology.

[83]  C. McLaughlin,et al.  Induction of heat shock proteins and thermotolerance by ethanol in Saccharomycescerevisiae , 1982 .

[84]  J. Bernhardt,et al.  First steps from a two‐dimensional protein index towards a response‐regulation map for Bacillus subtilis , 1997, Electrophoresis.

[85]  Denis Hochstrasser,et al.  Immobilized pH gradients in capillary tubes and two‐dimensional gel electrophoresis , 1986 .

[86]  A. Chrambach,et al.  Electrophoresis and electrofocusing in detergent containing media: A discussion of basic concepts , 1981 .

[87]  C. Fenselau,et al.  Sequencing electroblotted proteins by tandem mass spectrometry. , 1995, Rapid communications in mass spectrometry : RCM.

[88]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[89]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[90]  J. Foster,et al.  Global control in Salmonella typhimurium: two-dimensional electrophoretic analysis of starvation-, anaerobiosis-, and heat shock-inducible proteins , 1986, Journal of bacteriology.

[91]  K. O. Börnsen,et al.  Fast protein sequence determination with matrix-assisted laser desorption and ionization mass spectrometry. , 1991, Rapid communications in mass spectrometry : RCM.

[92]  Angelika Görg,et al.  Two‐dimensional electrophoresis. The current state of two‐dimensional electrophoresis with immobilized pH gradients , 1988 .

[93]  M. Dunn,et al.  Proteome analysis: from protein characterization to biological function. , 1997, Trends in cell biology.

[94]  G. Gonnet,et al.  Probing protein function using a combination of gene knockout and proteome analysis by mass spectrometry , 1997, Electrophoresis.

[95]  J. d'Alayer,et al.  An agarose-based gel-concentration system for microsequence and mass spectrometric characterization of proteins previously purified in polyacrylamide gels starting at low picomole levels. , 1995, European journal of biochemistry.

[96]  S. Burbeck,et al.  Identification of polypeptides on two-dimensional electrophoresis gels by amino acid composition. , 1984, Clinical chemistry.

[97]  M J MacCoss,et al.  Direct database searching with MALDI-PSD spectra of peptides. , 1995, Rapid communications in mass spectrometry : RCM.

[98]  M. Perrot,et al.  Rapid Identification of Yeast Proteins on Two-dimensional Gels (*) , 1996, The Journal of Biological Chemistry.

[99]  D. Weichart,et al.  Analysis of starvation conditions that allow for prolonged culturability of Vibrio vulnificus at low temperature. , 1996, Microbiology.

[100]  J Taylor,et al.  Use of principal components analysis for mutation detection with two–dimensional electrophoresis protein separations , 1992, Electrophoresis.

[101]  J. Jarvik,et al.  CD-tagging: a new approach to gene and protein discovery and analysis. , 1996, BioTechniques.

[102]  F. Lottspeich,et al.  Structural characterization of blotting membranes and the influence of membrane parameters for electroblotting and subsequent amino acid sequence analysis of proteins , 1993, Electrophoresis.

[103]  Joël Vandekerckhove,et al.  Two‐dimensional gel electrophoresis, protein electroblotting and microsequencing: A direct link between proteins and genes , 1990, Electrophoresis.

[104]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[105]  M. Ploug,et al.  Determination of amino acid compositions and NH2-terminal sequences of peptides electroblotted onto PVDF membranes from tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis: application to peptide mapping of human complement component C3. , 1989, Analytical biochemistry.

[106]  A. Blomberg Osmoresponsive proteins and functional assessment strategies in Saccharomyces cerevisiae , 1997, Electrophoresis.

[107]  F. Neidhardt,et al.  The gene‐protein database of Escherichia coli: Edition 5 , 1992, Electrophoresis.

[108]  F. Blattner,et al.  Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. , 1992, Science.

[109]  P. Roepstorff,et al.  Peptide sequence information derived by partial acid hydrolysis and matrix-assisted laser desorption/ionization mass spectrometry. , 1994, Biological mass spectrometry.

[110]  S. Elledge,et al.  Gene identification using the yeast two-hybrid system. , 1997, Methods in enzymology.

[111]  N. Anderson,et al.  The Human Protein Index. , 1981, Clinical chemistry.

[112]  P. Edman,et al.  A protein sequenator. , 1967, European journal of biochemistry.

[113]  D. Pappin,et al.  Identification of myocardial proteins from two‐dimensional gels by peptide mass fingerprinting , 1995, Electrophoresis.

[114]  R. Brimacombe,et al.  Contacts between 16S ribosomal RNA and mRNA, within the spacer region separating the AUG initiator codon and the Shine-Dalgarno sequence; a site-directed cross-linking study. , 1994, Nucleic acids research.

[115]  R. Beynon,et al.  Purification and characterization of a metallo-endoproteinase from mouse kidney. , 1981, The Biochemical journal.

[116]  D. Hochstrasser,et al.  The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences , 1993, Electrophoresis.

[117]  M. Mann,et al.  Developments in matrix-assisted laser desorption/ionization peptide mass spectrometry. , 1996, Current opinion in biotechnology.

[118]  A. Tsugita,et al.  C-terminal sequencing of protein. A novel partial acid hydrolysis and analysis by mass spectrometry. , 1992, European journal of biochemistry.

[119]  F. Neidhardt,et al.  Growth rate paradox of Salmonella typhimurium within host macrophages , 1993, Journal of bacteriology.

[120]  J. Vohradský,et al.  Identification of procaryotic developmental stages by statistical analyses of two‐dimensional gel patterns , 1997, Electrophoresis.

[121]  H. Bielka,et al.  Preparative two-dimensional polyacrylamide gel electrophoresis of rat liver ribosomal proteins and determination of their amino acid compositions. , 1978, Biochimica et biophysica acta.

[122]  P. Matsudaira,et al.  Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. , 1987, The Journal of biological chemistry.

[123]  D. McDougald,et al.  Global analysis of physiological responses in marine bacteria , 1997, Electrophoresis.

[124]  A. Burlingame,et al.  Rapid mass spectrometric peptide sequencing and mass matching for characterization of human melanoma proteins isolated by two-dimensional PAGE. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[125]  P. Edman,et al.  A method for the determination of amino acid sequence in peptides. , 1949, Archives of biochemistry.

[126]  J. Foster Salmonella acid shock proteins are required for the adaptive acid tolerance response , 1991, Journal of bacteriology.

[127]  M. Mann,et al.  Cell biology and the genome projects a concerted strategy for characterizing multiprotein complexes by using mass spectrometry. , 1997, Trends in cell biology.

[128]  S. Cordwell,et al.  Characterisation of basic proteins from Spiroplasma melliferum using novel immobilised pH gradients , 1997, Electrophoresis.

[129]  D. Hochstrasser,et al.  Micropreparative two‐dimensional electrophoresis allowing the separation of samples containing milligram amounts of proteins , 1993, Electrophoresis.

[130]  M. Hecker,et al.  Heat‐shock and general stress response in Bacillus subtilis , 1996, Molecular microbiology.

[131]  P. Guptasarma Cooperative relaxation of supercoils and periodic transcriptional initiation within polymerase batteries. , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[132]  C. Sensen,et al.  The Sulfolobus solfataricus P2 genome project , 1996, FEBS letters.

[133]  D. Young,et al.  Very-high-resolution two-dimensional gel electrophoresis of proteins using giant gels. , 1980, Analytical biochemistry.

[134]  S. Fields,et al.  Analyzing protein-protein interactions using two-hybrid system. , 1995, Methods in enzymology.

[135]  P. Righetti,et al.  Membrane protein analysis by isoelectric focusing in immobilized pH gradients , 1985 .

[136]  J Taylor,et al.  Quantitation of human leukocyte proteins after silver staining: A study with two‐dimensional electrophoresis , 1991, Electrophoresis.

[137]  R. Aebersold,et al.  Functionalized membrane supports for covalent protein microsequence analysis. , 1991, Analytical biochemistry.

[138]  Amos Bairoch,et al.  Human liver protein map: A reference database established by microsequencing and gel comparison , 1992, Electrophoresis.

[139]  K. Parker,et al.  Peptide fingerprints after partial acid hydrolysis: analysis by matrix-assisted laser desorption/ionization mass spectrometry. , 1994, Rapid communications in mass spectrometry : RCM.

[140]  J. Yates,et al.  Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. , 1995, Analytical chemistry.

[141]  P. Righetti,et al.  Isoelectric focusing and non‐isoelectric precipitation of ferritin in immobilized pH gradients: An improved protocol overcoming protein‐matrix interactions , 1987 .

[142]  M R Wilkins,et al.  Rapid protein identification using N-terminal "sequence tag" and amino acid analysis. , 1996, Biochemical and biophysical research communications.

[143]  M J Dunn,et al.  The human myocardial two‐dimensional gel protein database: Update 1994 , 1994, Electrophoresis.

[144]  P. Argos,et al.  Identification of proteins in sequence databases from amino acid composition data. , 1991, Analytical biochemistry.

[145]  Eckart Fleck,et al.  Protein composition of the human heart: The construction of a myocardial two‐dimensional electrophoresis database , 1994, Electrophoresis.

[146]  P. Roepstorff,et al.  Identification of transformation sensitive proteins recorded in human two‐dimensional gel protein databases by mass spectrometric peptide mapping alone and in combination with microsequencing , 1994, Electrophoresis.

[147]  B. Wittmann-Liebold,et al.  Extended N-terminal sequencing of proteins of archaebacterial ribosomes blotted from two-dimensional gels onto glass fiber and poly(vinylidene difluoride) membrane. , 1988, Biochemistry.

[148]  Bonnie S. Dunbar,et al.  Basic Theories and Principles of Electrophoresis , 1987 .

[149]  L. Hood,et al.  A gas-liquid solid phase peptide and protein sequenator. , 1981, The Journal of biological chemistry.

[150]  J. Yates,et al.  Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. , 1997, Analytical chemistry.

[151]  R Kaufmann,et al.  Mass spectrometric sequencing of linear peptides by product-ion analysis in a reflectron time-of-flight mass spectrometer using matrix-assisted laser desorption ionization. , 1993, Rapid communications in mass spectrometry : RCM.

[152]  A. Podtelejnikov,et al.  Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[153]  S J Cordwell,et al.  Conserved motifs as the basis for recognition of homologous proteins across species boundaries using peptide-mass fingerprinting. , 1997, Journal of mass spectrometry : JMS.

[154]  André Goffeau,et al.  Molecular fish on chips , 1997, Nature.

[155]  P. Guptasarma,et al.  Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli? , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[156]  J. Celis,et al.  A qualitative and quantitative protein database approach identifies individual and groups of functionally related proteins that are differentially regulated in simian virus 40 (SV40) transformed human keratinocytes: An overview of the functional changes associated with the transformed phenotype , 1994, Electrophoresis.

[157]  A. von Eckardstein,et al.  Hybrid isoelectric focusing: Adsorption of proteins onto immobilized pH gradient matrices and desorption by carrier ampholytes , 1987 .

[158]  P. Righetti,et al.  Effect of 2-mercaptoethanol on pH gradients in isoelectric focusing. , 1982, Journal of biochemical and biophysical methods.

[159]  Y. Nakamura,et al.  Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). , 1996, DNA research : an international journal for rapid publication of reports on genes and genomes.

[160]  J. Klose,et al.  An attempt to resolve all the various proteins in a single human cell type by two-dimensional electrophoresis: I. Extraction of all cell proteins. , 1984, Clinical chemistry.

[161]  J. Shively,et al.  Automated carboxy-terminal sequence analysis of polypeptides containing C-terminal proline. , 1995, Analytical biochemistry.

[162]  T. Littlejohn,et al.  Peptide‐mass fingerprinting and the ideal covering set for protein characterisation , 1997, Electrophoresis.

[163]  G. L. Peterson [12] Determination of total protein , 1983 .

[164]  A. Cornish-Bowden Assessment of protein sequence identity from amino acid composition data. , 1977, Journal of theoretical biology.

[165]  E Gianazza,et al.  Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. , 1982, Journal of biochemical and biophysical methods.

[166]  A. Moir,et al.  Proteome of Salmonella typhimurium SL1344: identification of novel abundant cell envelope proteins and assignment to a two-dimensional reference map , 1996, Journal of bacteriology.

[167]  P. Slonimski,et al.  Two‐Dimensional protein map of Saccharomyces cerevisiae: Construction of a gene–protein index , 1995, Yeast.

[168]  D. Hochstrasser,et al.  The yeast SWISS‐2DPAGE database , 1996, Electrophoresis.

[169]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[170]  Guy Bauw,et al.  A two‐dimensional gel protein database of noncultured total normal human epidermal keratinocytes: Identification of proteins strongly up‐regulated in psoriatic epidermis , 1990, Electrophoresis.

[171]  R. Nowak Entering the Postgenome Era , 1995, Science.

[172]  "Colored" noise waveforms and quadrupole excitation for the dynamic range expansion of Fourier transform ion cyclotron resonance mass spectrometry. , 1996, Analytical chemistry.

[173]  P. Cash,et al.  Development of a Haemophilus two‐dimensional protein database , 1997, Electrophoresis.

[174]  N G Anderson,et al.  Twenty years of two‐dimensional electrophoresis: Past, present and future , 1996, Electrophoresis.

[175]  S. Cordwell,et al.  Proteome analysis of Spiroplasma melliferum (A56) and protein characterisation across species boundaries , 1997, Electrophoresis.

[176]  B. Alberts,et al.  Enhancement of bacteriophage T4 late transcription by components of the T4 DNA replication apparatus. , 1989, Science.

[177]  D. Hochstrasser,et al.  Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. , 1996, Biotechnology & genetic engineering reviews.

[178]  Peer Bork,et al.  Exploring the Mycoplasma capricolum genome: a minimal cell reveals its physiology , 1995, Molecular microbiology.

[179]  Gregory D. Schuler,et al.  ESTablishing a human transcript map , 1995, Nature Genetics.

[180]  P. Lemkin Comparing two‐dimensional electrophoretic gel images across the Internet , 1997, Electrophoresis.

[181]  A. Cornish-Bowden,et al.  How reliably do amino acid composition comparisons predict sequence similarities between proteins? , 1979, Journal of theoretical biology.

[182]  M. Stolowitz Chemical protein sequencing and amino acid analysis. , 1993, Current opinion in biotechnology.

[183]  P Vincens,et al.  Two-dimensional electrophoresis computerized processing. , 1988, The International journal of biochemistry.

[184]  F. Neidhardt,et al.  Proteins induced by anaerobiosis in Escherichia coli , 1983, Journal of bacteriology.

[185]  E. Schrödinger What is life? : the physical aspect of the living cell , 1944 .

[186]  P. Cash,et al.  Characterisation of Haemophilus influenzae proteins by two‐dimensional gel electrophoresis , 1995, Electrophoresis.

[187]  P. Moughan,et al.  Correction for amino acid loss during acid hydrolysis of a purified protein. , 1996, Analytical biochemistry.

[188]  M R Wilkins,et al.  Large-scale amino-acid analysis for proteome studies. , 1996, Journal of chromatography. A.

[189]  P. Jungblut,et al.  Protein analysis on a genomic scale. , 1995, Journal of biotechnology.

[190]  S. Komatsu,et al.  Deblocking and subsequent microsequence analysis of N alpha-blocked proteins electroblotted onto PVDF membrane. , 1992, Journal of Biochemistry (Tokyo).

[191]  B. Dujon The yeast genome project: what did we learn? , 1996, Trends in genetics : TIG.

[192]  P. Blackshear,et al.  Giant two‐dimensional gel electrophoresis: Methodological update and comparison with intermediate‐format gel systems , 1990, Electrophoresis.

[193]  G. Gonnet,et al.  Protein identification by mass profile fingerprinting. , 1993, Biochemical and biophysical research communications.

[194]  M. Mann,et al.  Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[195]  T D Wood,et al.  Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[196]  P Ferrara,et al.  In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. , 1992, Analytical biochemistry.

[197]  S. Nakagawa,et al.  Direct amino acid analysis of proteins electroblotted onto polyvinylidene difluoride membrane from sodium dodecyl sulfate-polyacrylamide gel. , 1989, Analytical biochemistry.

[198]  B. Dunbar Two-Dimensional Electrophoresis and Immunological Techniques , 1987, Springer US.

[199]  T. Nyström,et al.  Survival, stress resistance, and alterations in protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients , 1992, Applied and environmental microbiology.

[200]  J. Cottrell,et al.  Sample immobilization protocols for matrix-assisted laser-desorption mass spectrometry. , 1992, Rapid communications in mass spectrometry : RCM.

[201]  D. Pappin,et al.  Peptide ladder sequencing by mass spectrometry using a novel, volatile degradation reagent. , 1994, Rapid communications in mass spectrometry : RCM.

[202]  J Taylor,et al.  Mouse liver protein database: A catalog of proteins detected by two‐dimensional gel electrophoresis , 1992, Electrophoresis.

[203]  F. Neidhardt,et al.  Adaptation of Escherichia coli to the uncoupler of oxidative phosphorylation 2,4-dinitrophenol , 1993, Journal of bacteriology.

[204]  H. Schägger,et al.  Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. , 1987, Analytical biochemistry.

[205]  R. Aebersold,et al.  High-yield recovery of electroblotted proteins and cleavage fragments from a cationic polyvinylidene fluoride-based membrane. , 1992, Analytical biochemistry.

[206]  E. Geiduschek,et al.  Old phage, new insights: two recently recognized mechanisms of transcriptional regulation in bacteriophage T4 development. , 1995, FEMS microbiology letters.

[207]  Amos Bairoch,et al.  Plasma and red blood cell protein maps: Update 1993 , 1993, Electrophoresis.

[208]  A. Burlingame,et al.  Mass spectrometric and Edman sequencing of lipocortin I isolated by two-dimensional SDS/PAGE of human melanoma lysates. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[209]  S. Patterson,et al.  Matrix‐assisted laser‐desorption/ionization mass spectrometric approaches for the identification of gel‐separated proteins in the 5–50 pmol range , 1995, Electrophoresis.

[210]  F. Neidhardt,et al.  Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli , 1996, Journal of bacteriology.

[211]  J. Klose,et al.  Identification of tissue proteins by amino acid analysis after purification by two-dimensional electrophoresis , 1992, Journal of protein chemistry.

[212]  C. Hutchison,et al.  A survey of the Mycoplasma genitalium genome by using random sequencing , 1993, Journal of bacteriology.

[213]  Wayne F. Patton,et al.  Development of a dedicated two-dimensional gel electrophoresis system that provides optimal pattern reproducibility and polypeptide resolution. , 1990, BioTechniques.

[214]  Analytical and micropreparative two-dimensional electrophoresis of proteins , 1991 .

[215]  P. Righetti,et al.  On the computational approach to immobilized pH gradients , 1991, Electrophoresis.

[216]  A. Helenius,et al.  Solubilization of membranes by detergents. , 1975, Biochimica et biophysica acta.

[217]  R. Aebersold,et al.  Protein identification by solid phase microextraction—capillary zone electrophoresis—microelectrospray—tandem mass spectrometry , 1996, Nature Biotechnology.

[218]  C. Higgins Stability and degradation of mRNA. , 1991, Current opinion in cell biology.

[219]  F. Neidhardt,et al.  Ribosomes as sensors of heat and cold shock in Escherichia coli. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[220]  C. O'Connor,et al.  The proteome of Salmonella enterica serovar typhimurium: Current progress on its determination and some applications , 1997, Electrophoresis.

[221]  F. Lottspeich,et al.  Ultraviolet matrix assisted laser desorption ionization‐mass spectrometry of electroblotted proteins , 1996, Electrophoresis.

[222]  S. Fields,et al.  Protein-protein interactions: methods for detection and analysis , 1995, Microbiological reviews.

[223]  U. Hobohm,et al.  A sequence property approach to searching protein databases. , 1995, Journal of molecular biology.

[224]  J Vandekerckhove,et al.  Microsequences of 145 proteins recorded in the two‐dimensional gel protein database of normal human epidermal keratinocytes , 1992, Electrophoresis.

[225]  F. Neidhardt,et al.  Induction of proteins in response to low temperature in Escherichia coli , 1987, Journal of bacteriology.

[226]  M. Perrot,et al.  Identification of proteins of the yeast protein map using genetically manipulated strains and peptide‐mass fingerprinting , 1996, Yeast.

[227]  D. Israeli,et al.  Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the drosophila seven in absentia gene. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[228]  R. Fleischmann,et al.  Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. , 1995, Nature.

[229]  I. Humphery-Smith,et al.  ‘Proteomic contigs’ of Mycobacterium tuberculosis and Mycobacterium bovis (BCG) using novel immobilised pH gradients , 1997, Electrophoresis.

[230]  A. Galat,et al.  Convergence of amino acid compositions of certain groups of proteins aids in their identification on two‐dimensional electrophoresis gels , 1997, Electrophoresis.

[231]  J. Vandekerckhove,et al.  Microsequencing of proteins recorded in human two‐dimensional gel protein databases , 1991, Electrophoresis.

[232]  A human myocardial two‐dimensional electrophoresis database: Protein characterisation by microsequencing and immunoblotting , 1992, Electrophoresis.

[233]  S. Dekio,et al.  Amino Acid Compositions of Human Hair Fibrous Protein Components Purified with Two‐dimensional Electrophoresis , 1989, The Journal of dermatology.

[234]  J R Yates,et al.  Protein sequencing by tandem mass spectrometry. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[235]  J. Seilhamer,et al.  A comparison of selected mRNA and protein abundances in human liver , 1997, Electrophoresis.

[236]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[237]  J. Yates,et al.  Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. , 1995, Analytical chemistry.

[238]  F. Neidhardt,et al.  Escherichia coli proteome analysis using the gene‐protein database , 1997, Electrophoresis.

[239]  P. Kahn From Genome to Proteome: Looking at a Cell's Proteins , 1995 .

[240]  C. Watanabe,et al.  Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[241]  Jiří Vohradský,et al.  Adaptive classification of two‐dimensional gel electrophoretic spot patterns by neural networks and cluster analysis , 1997, Electrophoresis.

[242]  U. Hellman,et al.  Improvement of an "In-Gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. , 1995, Analytical biochemistry.

[243]  T. Rabilloud A comparison between low background silver diammine and silver nitrate protein stains , 1992, Electrophoresis.

[244]  M. Wilkins,et al.  Progress with gene‐product mapping of the Mollicutes: Mycoplasma genitalium , 1995, Electrophoresis.

[245]  M J Dunn,et al.  Coelectrophoresis of cardiac tissue from human, dog, rat and mouse: Towards the establishment of an integrated two‐dimensional protein database , 1995, Electrophoresis.

[246]  H. Morris Research on peptides and glycopeptides , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[247]  W. Gilbert,et al.  ISOLATION OF THE LAC REPRESSOR , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[248]  C Sander,et al.  Amino acid analysis and protein database compositional search as a rapid and inexpensive method to identify proteins. , 1994, Analytical biochemistry.

[249]  Katherine B. Williams,et al.  A two‐dimensional electrophoresis database of human breast epithelial cell proteins , 1997, Electrophoresis.

[250]  R Kaufmann,et al.  Peptide sequencing by matrix-assisted laser-desorption mass spectrometry. , 1992, Rapid communications in mass spectrometry : RCM.

[251]  P. O’Farrell High resolution two-dimensional electrophoresis of proteins. , 1975, The Journal of biological chemistry.

[252]  A. Görg,et al.  Proteome analysis of Saccharomyces cerevisiae: A methodological outline , 1997, Electrophoresis.

[253]  E. Müller,et al.  Identification of human myocardial proteins separated by two‐dimensional electrophoresis with matrix‐assisted laser desorption/ionization mass spectrometry , 1996, Electrophoresis.

[254]  Angelika Görg,et al.  Two-dimensional electrophoresis , 1991 .

[255]  T R Hughes,et al.  Reverse transcriptase motifs in the catalytic subunit of telomerase. , 1997, Science.

[256]  S. Cordwell,et al.  Evaluation of algorithms used for cross‐species proteome characterisation , 1997, Electrophoresis.

[257]  F. H. Schmidt,et al.  The role of mRNA and protein stability in gene expression , 1989, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[258]  C. Adessi,et al.  Improvement of the solubilization of proteins in two‐dimensional electrophoresis with immobilized pH gradients , 2006, Electrophoresis.

[259]  I. Humphery-Smith,et al.  Polypeptide cartography of Spiroplasma taiwanense , 1994, Electrophoresis.

[260]  The prediction of repetitive protein sequences from amino acid compositions. , 1984, The Biochemical journal.

[261]  S. Engelmann,et al.  Analysis of the induction of general stress proteins of Bacillus subtilis. , 1994, Microbiology.

[262]  Anders Blomberg,et al.  Interlaboratory reproducibility of yeast protein patterns analyzed by immobilized pH gradient two‐dimensional gel electrophoresis , 1995, Electrophoresis.

[263]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[264]  L. Hood,et al.  Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[265]  A Bairoch,et al.  Two‐dimensional gel electrophoresis of Escherichia coli homogenates: The Escherichia coli SWISS‐2DPAGE database , 1996, Electrophoresis.

[266]  J R Yates,et al.  Protein structure analysis by mass spectrometry. , 1996, Methods in enzymology.

[267]  A. Bensadoun,et al.  Assay of proteins in the presence of interfering materials. , 1976, Analytical biochemistry.

[268]  Richard C. Strohman,et al.  The coming Kuhnian revolution in biology , 1997, Nature Biotechnology.

[269]  M Wilm,et al.  Electrospray mass spectrometry for protein characterization. , 1995, Trends in biochemical sciences.

[270]  D. Young Advantages of separations on "giant" two-dimensional gels for detection of physiologically relevant changes in the expression of protein gene-products. , 1984, Clinical chemistry.

[271]  George M. Church,et al.  Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K‐12 , 1997, Electrophoresis.

[272]  G. Scheele,et al.  Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins. , 1975, The Journal of biological chemistry.

[273]  D. Parmelee,et al.  The rat liver epithelial (RLE) cell nuclear protein database , 1993, Electrophoresis.

[274]  L. Vuillard,et al.  Silver-staining of proteins in polyacrylamide gels: a general overview. , 1994, Cellular and molecular biology.

[275]  J. Foster The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins , 1993, Journal of bacteriology.

[276]  Michele Kirchner,et al.  Peptide-mass profiles of polyvinylidene difluoride-bound proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in the presence of nonionic detergents. , 1996, Analytical biochemistry.

[277]  J. Yates,et al.  The quadrupole ion trap mass spectrometer--a small solution to a big challenge. , 1997, Analytical biochemistry.

[278]  A Bairoch,et al.  Human liver protein map: Update 1993 , 1993, Electrophoresis.

[279]  Akira Tsugita,et al.  Workshop on two‐dimensional gel protein databases , 1992, Electrophoresis.

[280]  C. Eckerskorn,et al.  Enhanced in situ gel digestion of electrophoretically separated proteins with automated peptide elution onto mini reversed‐phase columns , 1996, Electrophoresis.

[281]  M. Van Montagu,et al.  Protein-blotting on Polybrene-coated glass-fiber sheets. A basis for acid hydrolysis and gas-phase sequencing of picomole quantities of protein previously separated on sodium dodecyl sulfate/polyacrylamide gel. , 1985, European journal of biochemistry.