The E3 ubiquitin ligase IDOL regulates synaptic ApoER2 levels and is important for plasticity and learning

Neuronal ApoE receptors are linked to learning and memory, but the pathways governing their abundance, and the mechanisms by which they affect the function of neural circuits are incompletely understood. Here we demonstrate that the E3 ubiquitin ligase IDOL determines synaptic ApoER2 protein levels in response to neuronal activation and regulates dendritic spine morphogenesis and plasticity. IDOL-dependent changes in ApoER2 abundance modulate dendritic filopodia initiation and synapse maturation. Loss of IDOL in neurons results in constitutive overexpression of ApoER2 and is associated with impaired activity-dependent structural remodeling of spines and defective LTP in primary neuron cultures and hippocampal slices. IDOL-deficient mice show profound impairment in experience-dependent reorganization of synaptic circuits in the barrel cortex, as well as diminished spatial and associative learning. These results identify control of lipoprotein receptor abundance by IDOL as a post-transcriptional mechanism underlying the structural and functional plasticity of synapses and neural circuits.

[1]  J. DeFelipe,et al.  Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells , 2016, Cerebral cortex.

[2]  Amanda L. Loshbaugh,et al.  Labelling and optical erasure of synaptic memory traces in the motor cortex , 2015, Nature.

[3]  R. Hammer,et al.  Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning , 2014, Science Signaling.

[4]  Richard G. Lee,et al.  The LXR-Idol axis differentially regulates plasma LDL levels in primates and mice. , 2014, Cell metabolism.

[5]  A. Holtmaat,et al.  Sensory-evoked LTP driven by dendritic plateau potentials in vivo , 2014, Nature.

[6]  Y. Goda,et al.  The interplay between Hebbian and homeostatic synaptic plasticity , 2013, The Journal of cell biology.

[7]  S. Young,et al.  IDOL Stimulates Clathrin-Independent Endocytosis and Multivesicular Body-Mediated Lysosomal Degradation of the Low-Density Lipoprotein Receptor , 2013, Molecular and Cellular Biology.

[8]  F. Helmchen,et al.  Reorganization of cortical population activity imaged throughout long-term sensory deprivation , 2012, Nature Neuroscience.

[9]  Jyothi Arikkath,et al.  Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex , 2012, Nature Protocols.

[10]  Ryohei Yasuda,et al.  Postsynaptic signaling during plasticity of dendritic spines , 2012, Trends in Neurosciences.

[11]  J. Schwabe,et al.  FERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors , 2011, Proceedings of the National Academy of Sciences.

[12]  J. Rogers,et al.  Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. , 2011, Learning & memory.

[13]  J. Schwabe,et al.  The IDOL-UBE2D complex mediates sterol-dependent degradation of the LDL receptor. , 2011, Genes & development.

[14]  P. D. de Jong,et al.  Targeted Disruption of the Idol Gene Alters Cellular Regulation of the Low-Density Lipoprotein Receptor by Sterols and Liver X Receptor Agonists , 2011, Molecular and Cellular Biology.

[15]  E. Weeber,et al.  ApoE Receptor 2 Regulates Synapse and Dendritic Spine Formation , 2011, PloS one.

[16]  M. Ehlers,et al.  Ubiquitination in postsynaptic function and plasticity. , 2010, Annual review of cell and developmental biology.

[17]  C. Hoogenraad,et al.  Actin in dendritic spines: connecting dynamics to function , 2010, The Journal of cell biology.

[18]  Peter Tontonoz,et al.  The E3 Ubiquitin Ligase IDOL Induces the Degradation of the Low Density Lipoprotein Receptor Family Members VLDLR and ApoER2* , 2010, The Journal of Biological Chemistry.

[19]  P. Tontonoz,et al.  LXR Regulates Cholesterol Uptake Through Idol-Dependent Ubiquitination of the LDL Receptor , 2009, Science.

[20]  Jacob G. Bernstein,et al.  Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain , 2009, Neuron.

[21]  G. Turrigiano The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses , 2008, Cell.

[22]  G. D’Arcangelo,et al.  The Reelin Signaling Pathway Promotes Dendritic Spine Development in Hippocampal Neurons , 2008, The Journal of Neuroscience.

[23]  C. Portera-Cailliau,et al.  A method for 2-photon imaging of blood flow in the neocortex through a cranial window. , 2008, Journal of visualized experiments : JoVE.

[24]  A. Whitmarsh,et al.  The JIP1 Scaffold Protein Regulates Axonal Development in Cortical Neurons , 2008, Current Biology.

[25]  D. Surmeier,et al.  Kalirin-7 Controls Activity-Dependent Structural and Functional Plasticity of Dendritic Spines , 2007, Neuron.

[26]  M. Sheng,et al.  Synaptic Accumulation of PSD-95 and Synaptic Function Regulated by Phosphorylation of Serine-295 of PSD-95 , 2007, Neuron.

[27]  R. Huganir,et al.  The cell biology of synaptic plasticity: AMPA receptor trafficking. , 2007, Annual review of cell and developmental biology.

[28]  P. Rakic,et al.  Requirement of JIP scaffold proteins for NMDA-mediated signal transduction. , 2007, Genes & development.

[29]  S. Kaech,et al.  Culturing hippocampal neurons , 2006, Nature Protocols.

[30]  J. Herz,et al.  Reelin, lipoprotein receptors and synaptic plasticity , 2006, Nature Reviews Neuroscience.

[31]  C. Vorhees,et al.  Morris water maze: procedures for assessing spatial and related forms of learning and memory , 2006, Nature Protocols.

[32]  I. Macara,et al.  The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis , 2006, Nature Cell Biology.

[33]  M. Sheng,et al.  Molecular mechanisms of dendritic spine morphogenesis , 2006, Current Opinion in Neurobiology.

[34]  M. Frotscher,et al.  Modulation of Synaptic Plasticity and Memory by Reelin Involves Differential Splicing of the Lipoprotein Receptor Apoer2 , 2005, Neuron.

[35]  G. D’Arcangelo Apoer2: A Reelin Receptor to Remember , 2005, Neuron.

[36]  Y. Goda,et al.  The actin cytoskeleton: integrating form and function at the synapse. , 2005, Annual review of neuroscience.

[37]  L. Van Aelst,et al.  Rho GTPases, dendritic structure, and mental retardation. , 2005, Journal of neurobiology.

[38]  Suzanne Paradis,et al.  The Rac1-GEF Tiam1 Couples the NMDA Receptor to the Activity-Dependent Development of Dendritic Arbors and Spines , 2005, Neuron.

[39]  T. Bonhoeffer,et al.  Bidirectional Activity-Dependent Morphological Plasticity in Hippocampal Neurons , 2004, Neuron.

[40]  Takeharu Nagai,et al.  Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity , 2004, Nature Neuroscience.

[41]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[42]  R. Yuste,et al.  Activity-Regulated Dynamic Behavior of Early Dendritic Protrusions: Evidence for Different Types of Dendritic Filopodia , 2003, The Journal of Neuroscience.

[43]  H. Kasai,et al.  Structure–stability–function relationships of dendritic spines , 2003, Trends in Neurosciences.

[44]  J. Sweatt,et al.  Reelin and ApoE Receptors Cooperate to Enhance Hippocampal Synaptic Plasticity and Learning* , 2002, The Journal of Biological Chemistry.

[45]  R. Buchsbaum,et al.  Interaction of Rac Exchange Factors Tiam1 and Ras-GRF1 with a Scaffold for the p38 Mitogen-Activated Protein Kinase Cascade , 2002, Molecular and Cellular Biology.

[46]  M. Sheng,et al.  Dentritic spines : structure, dynamics and regulation , 2001, Nature Reviews Neuroscience.

[47]  J. Blenis,et al.  Cargo of Kinesin Identified as Jip Scaffolding Proteins and Associated Signaling Molecules , 2001, The Journal of cell biology.

[48]  Wei-Yang Lu,et al.  Activation of Synaptic NMDA Receptors Induces Membrane Insertion of New AMPA Receptors and LTP in Cultured Hippocampal Neurons , 2001, Neuron.

[49]  J. Buccafusco Methods of Behavior Analysis in Neuroscience , 2000 .

[50]  W. Schneider,et al.  The Reelin Receptor ApoER2 Recruits JNK-interacting Proteins-1 and -2* , 2000, The Journal of Biological Chemistry.

[51]  Ann Y. Nakayama,et al.  Small GTPases Rac and Rho in the Maintenance of Dendritic Spines and Branches in Hippocampal Pyramidal Neurons , 2000, The Journal of Neuroscience.

[52]  Stephen J. Smith,et al.  Filopodia, Spines, and the Generation of Synaptic Diversity , 2000, Neuron.

[53]  J. Hell,et al.  A Developmental Change in NMDA Receptor-Associated Proteins at Hippocampal Synapses , 2000, The Journal of Neuroscience.

[54]  E. Welker,et al.  Spatial, temporal and subcellular localization of islet‐brain 1 (IB1), a homologue of JIP‐1, in mouse brain , 2000, The European journal of neuroscience.

[55]  R. Frostig,et al.  Two Directions of Plasticity in the Sensory-Deprived Adult Cortex , 1999, Neuron.

[56]  J. Yasuda,et al.  A mammalian scaffold complex that selectively mediates MAP kinase activation. , 1998, Science.

[57]  K. Browman,et al.  Cued and Contextual Fear Conditioning for Rodents , 2009 .

[58]  K. Svoboda,et al.  Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window , 2009, Nature Protocols.

[59]  Joseph E LeDoux,et al.  Structural plasticity and memory , 2004, Nature Reviews Neuroscience.

[60]  Rafael Yuste,et al.  Genesis of dendritic spines: insights from ultrastructural and imaging studies , 2004, Nature Reviews Neuroscience.

[61]  Liqun Luo,et al.  Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. , 2002, Annual review of cell and developmental biology.

[62]  H. Bock,et al.  Lipoprotein receptors in the nervous system. , 2002, Annual review of biochemistry.