Discovering patterns of medical practice in large administrative health databases

Health databases are characterised by large number of records, large number of attributes and mild density. This encourages data miners to use methodologies that are more sensitive to health industry specifics. For conceptual mining, the classic pattern-growth methods are found limited due to their great resource consumption. As an alternative, we propose a technique that uses some of the properties of graphs. Such a technique delivers as complete and compact knowledge about the data as the pattern-growth techniques, but is found to be more efficient.

[1]  Michael Luxenburger,et al.  Implications partielles dans un contexte , 1991 .

[2]  Dieter Kratsch,et al.  Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..

[3]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[4]  Dorothy E. Leidner,et al.  Review: Knowledge Management and Knowledge Management Systems: Conceptual Foundations and Research Issues , 2001, MIS Q..

[5]  Rokia Missaoui,et al.  INCREMENTAL CONCEPT FORMATION ALGORITHMS BASED ON GALOIS (CONCEPT) LATTICES , 1995, Comput. Intell..

[6]  AlaviMaryam,et al.  Review: Knowledge management and knowledge management systems , 2001 .

[7]  Anne Berry,et al.  Generating All the Minimal Separators of a Graph , 2000, Int. J. Found. Comput. Sci..

[8]  Yuval Shahar,et al.  Knowledge-based temporal abstraction in clinical domains , 1996, Artif. Intell. Medicine.

[9]  Anne Berry,et al.  Separability Generalizes Dirac's Theorem , 1998, Discret. Appl. Math..

[10]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[11]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[12]  Rudolf Halin,et al.  Lattices of cuts in graphs , 1991 .

[13]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[14]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..

[15]  David M. Beazley,et al.  Python Essential Reference , 1999 .

[16]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[17]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[18]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.