The Poincare-Bendixson theorem for monotone cyclic feedback systems

AbstractWe prove the Poincare-Bendixson theorem for monotone cyclic feedback systems; that is, systems inRn of the form $$x_i = f_i (x_i , x_{i - 1} ), i = 1, 2, ..., n (\bmod n).$$ We apply our results to a variety of models of biological systems.

[1]  Karl Nickel,et al.  Gestaltaussagen über Lösungen parabolischer Differentialgleichungen. , 1962 .

[2]  B. Goodwin Temporal organization in cells , 1963 .

[3]  P. Hartman Ordinary Differential Equations , 1965 .

[4]  B. Goodwin Oscillatory behavior in enzymatic control processes. , 1965, Advances in enzyme regulation.

[5]  J. Griffith,et al.  Mathematics of cellular control processes. I. Negative feedback to one gene. , 1968, Journal of theoretical biology.

[6]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[7]  A. Fraser,et al.  Genetical feedback-repression. II. Cyclic genetic systems. , 1974, Journal of theoretical biology.

[8]  J. Tyson On the existence of oscillatory solutions in negative feedback cellular control processes , 1975 .

[9]  Review: A. M. Fink, Almost periodic differential equations, and R. Reissig and G. Sansone and R. Conti, Nonlinear differential equations of higher order, and J. K. Hale, Functional differential equations , 1976 .

[10]  U an der Heiden Existence of periodic solutions of a nerve equation. , 1976, Biological cybernetics.

[11]  John J. Tyson,et al.  Existence of periodic solutions for negative feedback cellular control systems , 1977 .

[12]  N. Macdonald,et al.  Birfurcation theory applied to a simple model of a biochemical oscillator. , 1977, Journal of theoretical biology.

[13]  S. P. Hastings,et al.  On the uniqueness and global asymptotic stability of periodic solutions for a third order system , 1977 .

[14]  N. Macdonald,et al.  Time lag in a model of a biochemical reaction sequence with end product inhibition. , 1977, Journal of theoretical biology.

[15]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[16]  D. J. Allwright,et al.  A global stability criterion for simple control loops , 1977 .

[17]  John J. Tyson,et al.  The Dynamics of Feedback Control Circuits in Biochemical Pathways , 1978 .

[18]  Harvey Thomas Banks,et al.  Global asymptotic stability of certain models for protein synthesis and repression , 1978 .

[19]  H. Banks,et al.  Stability of cyclic gene models for systems involving repression. , 1978, Journal of theoretical biology.

[20]  Hiroshi Matano,et al.  Convergence of solutions of one-dimensional semilinear parabolic equations , 1978 .

[21]  U. an der Heiden,et al.  Delays in physiological systems , 1979 .

[22]  U. an der Heiden Delays in physiological systems. , 1979, Journal of mathematical biology.

[23]  R. A. Smith,et al.  The Poincaré–Bendixson theorem for certain differential equations of higher order , 1979, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[24]  James F. Selgrade,et al.  Asymptotic behavior of solutions to single loop positive feedback systems , 1980 .

[25]  J. Mahaffy Periodic solutions for certain protein synthesis models , 1980 .

[26]  R. A. Smith,et al.  Existence of periodic orbits of autonomous ordinary differential equations , 1980, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[27]  Jack K. Hale,et al.  Topics in dynamic bifurcation theory , 1981 .

[28]  M. Hirsch Systems of di erential equations which are competitive or cooperative I: limit sets , 1982 .

[29]  H. Walther,et al.  Existence of chaos in control systems with delayed feedback , 1983 .

[30]  J. Smillie Competitive and Cooperative Tridiagonal Systems of Differential Equations , 1984 .

[31]  S. Chow,et al.  Stability, multiplicity and global continuation of symmetric periodic solutions of a nonlinear Volterra integral equation , 1985 .

[32]  M. Hirsch Systems of Differential Equations that are Competitive or Cooperative II: Convergence Almost Everywhere , 1985 .

[33]  J. Mahaffy Stability of periodic solutions for a model of genetic repression with delays , 1985 .

[34]  Bernold Fiedler,et al.  Numbers of zeros on invariant manifolds in reaction-diffusion equations , 1986 .

[35]  Hal L. Smith Periodic orbits of competitive and cooperative systems , 1986 .

[36]  W. M. Oliva Jacobi matrices and transversality , 1987, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[37]  R. A. Smith,et al.  Orbital stability for ordinary differential equations , 1987 .

[38]  Hal L. Smith,et al.  Oscillations and multiple steady states in a cyclic gene model with repression , 1987, Journal of mathematical biology.

[39]  Hal L. Smith Systems of ordinary differential equations which generate an order preserving flow. A survey of results , 1988 .

[40]  M. Hirsch Stability and convergence in strongly monotone dynamical systems. , 1988 .

[41]  J. Mallet-Paret,et al.  A Poincaré-Bendixson theorem for scalar reaction diffusion equations , 1989 .