Extrusive carbonatite outcrops – A source of chemical elements imbalance in topsoils of oceanic volcanic islands
暂无分享,去创建一个
J. Waerenborgh | F. Rocha | M. Dias | J. Madeira | J. Mata | R. Marques | B. Vieira | M. Prudencio
[1] J. Waerenborgh,et al. Geochemical fingerprints in topsoils of the volcanic Brava Island, Cape Verde , 2016 .
[2] F. Pirajno,et al. State of the art: Italian carbonatites and their potential for critical-metal deposits , 2016 .
[3] J. Waerenborgh,et al. Origin of reddening in a paleosol buried by lava flows in Fogo island (Cape Verde) , 2014 .
[4] J. Waerenborgh,et al. Iron speciation in volcanic topsoils from Fogo island (Cape Verde) — Iron oxide nanoparticles and trace elements concentrations , 2014 .
[5] M. Moreira,et al. Geochemical temporal evolution of Brava Island magmatism: Constraints on the variability of Cape Verde mantle sources and on carbonatite-silicate magma link , 2012 .
[6] Adrian P. Jones,et al. Carbonate Melts and Carbonatites , 2012 .
[7] C. De Ignacio,et al. Carbonatites and associated nephelinites from São Vicente, Cape Verde Islands , 2012, Mineralogical Magazine.
[8] M. Moreira,et al. Primary and secondary processes constraining the noble gas isotopic signatures of carbonatites and silicate rocks from Brava Island: evidence for a lower mantle origin of the Cape Verde plume , 2012, Contributions to Mineralogy and Petrology.
[9] F. Rocha,et al. Patterns of rare earth and other trace elements in different size fractions of clays of Campanian–Maastrichtian deposits from the Portuguese western margin (Aveiro and Taveiro Formations) , 2011 .
[10] J. Waerenborgh,et al. Rare earth and other trace and major elemental distribution in a pedogenic calcrete profile (Slimene, NE Tunisia) , 2011 .
[11] Yongfeng Zhu,et al. Geochemistry of hydrothermal gold deposits: A review , 2011 .
[12] M. Moreira,et al. Geochemical constraints on depth of origin of oceanic carbonatites: The Cape Verde case , 2010 .
[13] D. Hoffmann,et al. Volcano-stratigraphic and structural evolution of Brava Island (Cape Verde) based on 40Ar/39Ar, U-Th and field constraints , 2010 .
[14] N. Barradas,et al. Validation of the Monte Carlo model supporting core conversion of the Portuguese Research Reactor (RPI) for neutron fluence rate determinations , 2010 .
[15] M. Moreira,et al. Noble gas and carbon isotopic signatures of Cape Verde oceanic carbonatites: Implications for carbon provenance , 2010 .
[16] K. Bell,et al. Large igneous provinces (LIPs) and carbonatites , 2010 .
[17] K. Bell,et al. Source of parental melts to carbonatites–critical isotopic constraints , 2010 .
[18] R. Salminen,et al. Antimony in the environment: Lessons from geochemical mapping , 2010 .
[19] M. Moreira,et al. Quaternary extrusive calciocarbonatite volcanism on Brava Island (Cape Verde): A nephelinite-carbonatite immiscibility product , 2010 .
[20] J. Waerenborgh,et al. Soils in the semi-arid area of the El Melah Lagoon (NE Tunisia) — Variability associated with a closing evolution , 2010 .
[21] M. Traub,et al. Dental fluorosis in the Cape Verde Islands: prevalence of clinical findings in an isolated island population. , 2009 .
[22] R. Rubio,et al. Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC–ICP-MS , 2007, Analytical and bioanalytical chemistry.
[23] M. Dias,et al. Raw material sources for the Roman Bracarense ceramics (NW Iberian Peninsula) , 2006 .
[24] C Christodoulatos,et al. A review of tungsten: from environmental obscurity to scrutiny. , 2006, Journal of hazardous materials.
[25] A. Woolley,et al. Extrusive carbonatites: A brief review , 2005 .
[26] G. Markl,et al. The Grønnedal-Ika Carbonatite-Syenite Complex, South Greenland: Carbonatite Formation by Liquid Immiscibility , 2004 .
[27] Dave Craw,et al. Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand , 2003 .
[28] P. Holm,et al. Temporal variation and carbonatite contamination in primitive ocean island volcanics from São Vicente, Cape Verde Islands , 2002 .
[29] F. Albarède,et al. Hf Isotope Evidence for a Miocene Change in the Kerguelen Mantle Plume Composition , 2002 .
[30] D. Garbe‐Schönberg,et al. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate , 2002 .
[31] G. M. da Costa,et al. Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art , 2000 .
[32] A. P. Gonçalves,et al. Influence of thermal treatment and crystal growth on the final composition and magnetic properties of the YFexAl12-x (4 ≤ x ≤ 4.2) intermetallics , 2000 .
[33] M. Gouveia,et al. Determination of Rare Earth Elements in Geological Reference Materials: A Comparative Study by INAA and ICP‐MS , 1999 .
[34] E. Murad. Clays and clay minerals: What can Mössbauer spectroscopy do to help understand them? , 1998 .
[35] R. Korotev. A SELF‐CONSISTENT COMPILATION OF ELEMENTAL CONCENTRATION DATA FOR 93 GEOCHEMICAL REFERENCE SAMPLES , 1996 .
[36] R. Korotev. The Composition of the Prebasin Crust in the Central Highlands of the Moon , 1996 .
[37] M. S. Braga,et al. REE Distribution in Present-Day and Ancient Surface Environments of Basaltic Rocks (Central Portugal) , 1995, Clay Minerals.
[38] K. Govindaraju,et al. 1994 REPORT ON ZINNWALDITE ZW‐C ANALYSED BY NINETY‐TWO GIT‐IWG MEMBER‐LABORATORIES , 1994 .
[39] K. Govindaraju,et al. 1994 compilation of working values and sample description for 383 geostandards , 1994 .
[40] L. Kogarko. Geochemical characteristics of oceanic carbonatites from the Cape Verde Islands , 1993 .
[41] M. Gouveia,et al. New data on the GSJ reference rocks JB-1a and JG-1a by instrumental neutron activation analysis , 1992 .
[42] M. F. Reis,et al. Factor for correcting the ruthenium interference in instrumental neutron activation analysis of barium in uraniferous samples. , 1991, International Journal of Radiation Applications and Instrumentation. Part A: Applied Radiation and Isotopes.
[43] L. H. Bowen,et al. Some aspects concerning the characterization of iron oxides and hydroxides in soils and clays , 1990 .
[44] Robert C. Reynolds,et al. X-Ray Diffraction and the Identification and Analysis of Clay Minerals , 1989 .
[45] A. Woolley,et al. Carbonatites: nomenclature, average chemical compositions, and element distribution , 1989 .
[46] R. W. Le Maitre,et al. A Classification of igneous rocks and glossary of terms : recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks , 1989 .
[47] N. Grevesse,et al. Abundances of the elements: Meteoritic and solar , 1989 .
[48] M. M. Abreu,et al. Oriented overgrowth of acicular maghemite crystals on quartz , 1988, Clay Minerals.
[49] M. Freitas,et al. Interference from uranium fission products in the determination of rare earths, zirconium and ruthenium by instrumental neutron activation analysis in rocks and minerals , 1987 .
[50] M. Gouveia,et al. Instrumental Neutron Activation Analysis of Two French Geochemical Reference Samples - Basalt BR and Biotite Mica-Fe , 1986 .
[51] G. Brindley,et al. Crystal Structures of Clay Minerals and their X-ray Identification , 1982 .
[52] A. Robertson,et al. An oceanic carbonatite volcano on Santiago, Cape Verde Islands , 1981, Nature.
[53] M. Bernat,et al. Evidence for the Occurrence of Carbonatites on the Cape Verde and Canary Islands , 1971 .
[54] J. B. Bebiano. A geologia do Arquipélago de Cabo Verde , 1932 .