Extrusive carbonatite outcrops – A source of chemical elements imbalance in topsoils of oceanic volcanic islands

[1]  J. Waerenborgh,et al.  Geochemical fingerprints in topsoils of the volcanic Brava Island, Cape Verde , 2016 .

[2]  F. Pirajno,et al.  State of the art: Italian carbonatites and their potential for critical-metal deposits , 2016 .

[3]  J. Waerenborgh,et al.  Origin of reddening in a paleosol buried by lava flows in Fogo island (Cape Verde) , 2014 .

[4]  J. Waerenborgh,et al.  Iron speciation in volcanic topsoils from Fogo island (Cape Verde) — Iron oxide nanoparticles and trace elements concentrations , 2014 .

[5]  M. Moreira,et al.  Geochemical temporal evolution of Brava Island magmatism: Constraints on the variability of Cape Verde mantle sources and on carbonatite-silicate magma link , 2012 .

[6]  Adrian P. Jones,et al.  Carbonate Melts and Carbonatites , 2012 .

[7]  C. De Ignacio,et al.  Carbonatites and associated nephelinites from São Vicente, Cape Verde Islands , 2012, Mineralogical Magazine.

[8]  M. Moreira,et al.  Primary and secondary processes constraining the noble gas isotopic signatures of carbonatites and silicate rocks from Brava Island: evidence for a lower mantle origin of the Cape Verde plume , 2012, Contributions to Mineralogy and Petrology.

[9]  F. Rocha,et al.  Patterns of rare earth and other trace elements in different size fractions of clays of Campanian–Maastrichtian deposits from the Portuguese western margin (Aveiro and Taveiro Formations) , 2011 .

[10]  J. Waerenborgh,et al.  Rare earth and other trace and major elemental distribution in a pedogenic calcrete profile (Slimene, NE Tunisia) , 2011 .

[11]  Yongfeng Zhu,et al.  Geochemistry of hydrothermal gold deposits: A review , 2011 .

[12]  M. Moreira,et al.  Geochemical constraints on depth of origin of oceanic carbonatites: The Cape Verde case , 2010 .

[13]  D. Hoffmann,et al.  Volcano-stratigraphic and structural evolution of Brava Island (Cape Verde) based on 40Ar/39Ar, U-Th and field constraints , 2010 .

[14]  N. Barradas,et al.  Validation of the Monte Carlo model supporting core conversion of the Portuguese Research Reactor (RPI) for neutron fluence rate determinations , 2010 .

[15]  M. Moreira,et al.  Noble gas and carbon isotopic signatures of Cape Verde oceanic carbonatites: Implications for carbon provenance , 2010 .

[16]  K. Bell,et al.  Large igneous provinces (LIPs) and carbonatites , 2010 .

[17]  K. Bell,et al.  Source of parental melts to carbonatites–critical isotopic constraints , 2010 .

[18]  R. Salminen,et al.  Antimony in the environment: Lessons from geochemical mapping , 2010 .

[19]  M. Moreira,et al.  Quaternary extrusive calciocarbonatite volcanism on Brava Island (Cape Verde): A nephelinite-carbonatite immiscibility product , 2010 .

[20]  J. Waerenborgh,et al.  Soils in the semi-arid area of the El Melah Lagoon (NE Tunisia) — Variability associated with a closing evolution , 2010 .

[21]  M. Traub,et al.  Dental fluorosis in the Cape Verde Islands: prevalence of clinical findings in an isolated island population. , 2009 .

[22]  R. Rubio,et al.  Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC–ICP-MS , 2007, Analytical and bioanalytical chemistry.

[23]  M. Dias,et al.  Raw material sources for the Roman Bracarense ceramics (NW Iberian Peninsula) , 2006 .

[24]  C Christodoulatos,et al.  A review of tungsten: from environmental obscurity to scrutiny. , 2006, Journal of hazardous materials.

[25]  A. Woolley,et al.  Extrusive carbonatites: A brief review , 2005 .

[26]  G. Markl,et al.  The Grønnedal-Ika Carbonatite-Syenite Complex, South Greenland: Carbonatite Formation by Liquid Immiscibility , 2004 .

[27]  Dave Craw,et al.  Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand , 2003 .

[28]  P. Holm,et al.  Temporal variation and carbonatite contamination in primitive ocean island volcanics from São Vicente, Cape Verde Islands , 2002 .

[29]  F. Albarède,et al.  Hf Isotope Evidence for a Miocene Change in the Kerguelen Mantle Plume Composition , 2002 .

[30]  D. Garbe‐Schönberg,et al.  Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate , 2002 .

[31]  G. M. da Costa,et al.  Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art , 2000 .

[32]  A. P. Gonçalves,et al.  Influence of thermal treatment and crystal growth on the final composition and magnetic properties of the YFexAl12-x (4 ≤ x ≤ 4.2) intermetallics , 2000 .

[33]  M. Gouveia,et al.  Determination of Rare Earth Elements in Geological Reference Materials: A Comparative Study by INAA and ICP‐MS , 1999 .

[34]  E. Murad Clays and clay minerals: What can Mössbauer spectroscopy do to help understand them? , 1998 .

[35]  R. Korotev A SELF‐CONSISTENT COMPILATION OF ELEMENTAL CONCENTRATION DATA FOR 93 GEOCHEMICAL REFERENCE SAMPLES , 1996 .

[36]  R. Korotev The Composition of the Prebasin Crust in the Central Highlands of the Moon , 1996 .

[37]  M. S. Braga,et al.  REE Distribution in Present-Day and Ancient Surface Environments of Basaltic Rocks (Central Portugal) , 1995, Clay Minerals.

[38]  K. Govindaraju,et al.  1994 REPORT ON ZINNWALDITE ZW‐C ANALYSED BY NINETY‐TWO GIT‐IWG MEMBER‐LABORATORIES , 1994 .

[39]  K. Govindaraju,et al.  1994 compilation of working values and sample description for 383 geostandards , 1994 .

[40]  L. Kogarko Geochemical characteristics of oceanic carbonatites from the Cape Verde Islands , 1993 .

[41]  M. Gouveia,et al.  New data on the GSJ reference rocks JB-1a and JG-1a by instrumental neutron activation analysis , 1992 .

[42]  M. F. Reis,et al.  Factor for correcting the ruthenium interference in instrumental neutron activation analysis of barium in uraniferous samples. , 1991, International Journal of Radiation Applications and Instrumentation. Part A: Applied Radiation and Isotopes.

[43]  L. H. Bowen,et al.  Some aspects concerning the characterization of iron oxides and hydroxides in soils and clays , 1990 .

[44]  Robert C. Reynolds,et al.  X-Ray Diffraction and the Identification and Analysis of Clay Minerals , 1989 .

[45]  A. Woolley,et al.  Carbonatites: nomenclature, average chemical compositions, and element distribution , 1989 .

[46]  R. W. Le Maitre,et al.  A Classification of igneous rocks and glossary of terms : recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks , 1989 .

[47]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[48]  M. M. Abreu,et al.  Oriented overgrowth of acicular maghemite crystals on quartz , 1988, Clay Minerals.

[49]  M. Freitas,et al.  Interference from uranium fission products in the determination of rare earths, zirconium and ruthenium by instrumental neutron activation analysis in rocks and minerals , 1987 .

[50]  M. Gouveia,et al.  Instrumental Neutron Activation Analysis of Two French Geochemical Reference Samples - Basalt BR and Biotite Mica-Fe , 1986 .

[51]  G. Brindley,et al.  Crystal Structures of Clay Minerals and their X-ray Identification , 1982 .

[52]  A. Robertson,et al.  An oceanic carbonatite volcano on Santiago, Cape Verde Islands , 1981, Nature.

[53]  M. Bernat,et al.  Evidence for the Occurrence of Carbonatites on the Cape Verde and Canary Islands , 1971 .

[54]  J. B. Bebiano A geologia do Arquipélago de Cabo Verde , 1932 .