Visual Interactive Map Matching

Map matching is the process of assigning observed geographic positions of vehicles and their trajectories to the actual road links in a road network. In this paper, we present Visual Interactive Map Matching, a visual analytics approach to fine-tune the data preprocessing and matching process. It is based on ST-matching, a state-of-the-art and easy-to-understand map matching algorithm. Parameters of the preprocessing step and algorithm can be optimized with immediate visual feedback. Visualizations show current matching issues and performance metrics on a map and in diagrams. Manual and computer-supported editing of the road network model leads to a refined alignment of trajectories and roads. We demonstrate our approach with large-scale taxi trajectory data. We show that optimizing the matching on a subsample results in considerably improved matching quality, also when later scaled to the full dataset. An optimized matching ensures data faithfulness and prevents misinterpretation when the matched data might be investigated in follow-up analysis.

[1]  Gennady Andrienko,et al.  A General Framework for Using Aggregation in Visual Exploration of Movement Data , 2010 .

[2]  Thomas Ertl,et al.  TrajectoryLenses – A Set‐based Filtering and Exploration Technique for Long‐term Trajectory Data , 2013, Comput. Graph. Forum.

[3]  Chengyang Zhang,et al.  Map-matching for low-sampling-rate GPS trajectories , 2009, GIS.

[4]  Gennady L. Andrienko,et al.  Spatial Generalization and Aggregation of Massive Movement Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[5]  Daniel A. Keim,et al.  Visual Analytics of Movement , 2013, Springer Berlin Heidelberg.

[6]  Fei-Yue Wang,et al.  A Survey of Traffic Data Visualization , 2015, IEEE Transactions on Intelligent Transportation Systems.

[7]  Ye Zhao,et al.  TrajGraph: A Graph-Based Visual Analytics Approach to Studying Urban Network Centralities Using Taxi Trajectory Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[8]  Cláudio T. Silva,et al.  Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips , 2013, IEEE Transactions on Visualization and Computer Graphics.

[9]  Benedikt Nordhoff,et al.  Dijkstra’s Algorithm , 2013 .

[10]  Steven Skiena,et al.  Implementing discrete mathematics - combinatorics and graph theory with Mathematica , 1990 .

[11]  Jeffrey Heer,et al.  Wrangler: interactive visual specification of data transformation scripts , 2011, CHI.

[12]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[13]  Cláudio T. Silva,et al.  Vector Field k‐Means: Clustering Trajectories by Fitting Multiple Vector Fields , 2012, Comput. Graph. Forum.

[14]  Diansheng Guo,et al.  A graph-based approach to vehicle trajectory analysis , 2010, J. Locat. Based Serv..

[15]  Xiaoru Yuan,et al.  Visual Traffic Jam Analysis Based on Trajectory Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[16]  Xiaoru Yuan,et al.  Visual data quality analysis for taxi GPS data , 2015, 2015 IEEE Conference on Visual Analytics Science and Technology (VAST).

[17]  Helwig Hauser,et al.  Interactive visualization of streaming data with Kernel Density Estimation , 2011, 2011 IEEE Pacific Visualization Symposium.

[18]  Thomas Ertl,et al.  Inspector Gadget: Integrating Data Preprocessing and Orchestration in the Visual Analysis Loop , 2015, EuroVA@EuroVis.

[19]  Jürgen Bernard,et al.  Visual-Interactive Preprocessing of Time Series Data , 2012, SIGRAD.

[20]  Dino Pedreschi,et al.  Mobility, Data Mining and Privacy - Geographic Knowledge Discovery , 2008, Mobility, Data Mining and Privacy.

[21]  Xin Wang,et al.  Research and Application of Traffic Visualization Based on Vehicle GPS Big Data , 2016 .

[22]  Xiaoru Yuan,et al.  Visual Analysis of Multiple Route Choices Based on General GPS Trajectories , 2017, IEEE Transactions on Big Data.

[23]  Silvia Miksch,et al.  TimeCleanser: a visual analytics approach for data cleansing of time-oriented data , 2014, i-KNOW '14.

[24]  Michael Burch,et al.  Parallel Edge Splatting for Scalable Dynamic Graph Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[25]  David S. Ebert,et al.  Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information , 2018, IEEE Transactions on Visualization and Computer Graphics.

[26]  Robert B. Noland,et al.  Current map-matching algorithms for transport applications: State-of-the art and future research directions , 2007 .

[27]  Jarke J. van Wijk,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2009 Visualization of Vessel Movements , 2022 .