A robot for high yield electrophysiology and morphology of single neurons in vivo

[1]  Nicholas N. Foster,et al.  The mouse cortico-striatal projectome , 2016, Nature Neuroscience.

[2]  Athanasia G. Palasantza,et al.  Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq , 2015, Nature Biotechnology.

[3]  Karel Svoboda,et al.  A platform for brain-wide imaging and reconstruction of individual neurons , 2016, eLife.

[4]  Yuchio Yanagawa,et al.  Integration of electrophysiological recordings with single-cell RNA-seq data identifies novel neuronal subtypes , 2015, Nature Biotechnology.

[5]  Staci A. Sorensen,et al.  Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics , 2016 .

[6]  Hanchuan Peng,et al.  3D Image-Guided Automatic Pipette Positioning for Single Cell Experiments in vivo , 2015, Scientific Reports.

[7]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[8]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[9]  Daniel Johnston,et al.  MATLAB-based automated patch-clamp system for awake behaving mice. , 2015, Journal of neurophysiology.

[10]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[11]  Balázs Rózsa,et al.  Single-cell–initiated monosynaptic tracing reveals layer-specific cortical network modules , 2015, Science.

[12]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[13]  Aurélie Pala,et al.  In Vivo Measurement of Cell-Type-Specific Synaptic Connectivity and Synaptic Transmission in Layer 2/3 Mouse Barrel Cortex , 2015, Neuron.

[14]  A. Goodchild,et al.  Recording, labeling, and transfection of single neurons in deep brain structures , 2015, Physiological reports.

[15]  M. Häusser,et al.  Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo , 2014, Nature Methods.

[16]  D. Tank,et al.  Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields , 2014, Nature Neuroscience.

[17]  H. Seung,et al.  Neuronal Cell Types and Connectivity: Lessons from the Retina , 2014, Neuron.

[18]  Ian R. Wickersham,et al.  The Stimulus Selectivity and Connectivity of Layer Six Principal Cells Reveals Cortical Microcircuits Underlying Visual Processing , 2014, Neuron.

[19]  Tianyi Mao,et al.  A comprehensive thalamocortical projection map at the mesoscopic level , 2014, Nature Neuroscience.

[20]  Daniele Marinazzo,et al.  The Touch and Zap Method for In Vivo Whole-Cell Patch Recording of Intrinsic and Visual Responses of Cortical Neurons and Glial Cells , 2014, PloS one.

[21]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[22]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[23]  F. Fujiyama,et al.  Long-lasting single-neuron labeling by in vivo electroporation without microscopic guidance , 2013, Journal of Neuroscience Methods.

[24]  F. Helmchen,et al.  Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex , 2013, Nature.

[25]  Adi Mizrahi,et al.  Time-lapse electrical recordings of single neurons from the mouse neocortex , 2013, Proceedings of the National Academy of Sciences.

[26]  C. Clopath,et al.  The emergence of functional microcircuits in visual cortex , 2013, Nature.

[27]  Suhasa B. Kodandaramaiah,et al.  Automated whole-cell patch clamp electrophysiology of neurons in vivo , 2012, Nature Methods.

[28]  Andreas T Schaefer,et al.  Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics , 2011, Nature Neuroscience.

[29]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[30]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[31]  M. Häusser,et al.  Targeted single-cell electroporation of mammalian neurons in vivo , 2009, Nature Protocols.

[32]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[33]  W. Denk,et al.  Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo , 2008, Nature Methods.

[34]  Ian R. Wickersham,et al.  Retrograde neuronal tracing with a deletion-mutant rabies virus , 2007, Nature Methods.

[35]  M. Hawken,et al.  Loose-patch–juxtacellular recording in vivo—A method for functional characterization and labeling of neurons in macaque V1 , 2006, Journal of Neuroscience Methods.

[36]  H. Cline,et al.  In vivo single-cell electroporation for transfer of DNA and macromolecules , 2006, Nature Protocols.

[37]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[38]  B. Sakmann,et al.  In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain , 2002, Pflügers Archiv.

[39]  I. Spigelman,et al.  Electrophysiological Recording Techniques in Pain Research , 2001 .

[40]  Kurt Haas,et al.  Single-Cell Electroporationfor Gene Transfer In Vivo , 2001, Neuron.

[41]  D. Pinault,et al.  A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin , 1996, Journal of Neuroscience Methods.

[42]  A. Peters,et al.  The neuronal composition of area 17 of rat visual cortex. III. Numerical considerations , 1985, The Journal of comparative neurology.

[43]  T. Powell,et al.  An electron microscopic study of the types and proportions of neurons in the cortex of the motor and visual areas of the cat and rat. , 1980, Brain : a journal of neurology.