Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits

[1]  T. Bataillon,et al.  Molecular adaptation in flowering and symbiotic recognition pathways: insights from patterns of polymorphism in the legume Medicago truncatula , 2011, BMC Evolutionary Biology.

[2]  A. Pratap,et al.  Towards marker‐assisted selection in pulses: a review , 2011 .

[3]  Claire L. Knowles,et al.  The Pea GIGAS Gene Is a FLOWERING LOCUS T Homolog Necessary for Graft-Transmissible Specification of Flowering but Not for Responsiveness to Photoperiod[C][W] , 2011, Plant Cell.

[4]  C. Kole,et al.  Synteny and comparative genomics between model and cool season grain legumes. , 2011 .

[5]  Zhao-Bang Zeng,et al.  Windows QTL Cartographer 2·5 , 2011 .

[6]  P. Winter,et al.  A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations , 2010, Euphytica.

[7]  J. Maloof Recent advances in regulation of flowering , 2010, F1000 biology reports.

[8]  M. Moreno,et al.  Marker-assisted selection in faba bean (Vicia faba L.) , 2010 .

[9]  Matthew Bellgard,et al.  Aligning a New Reference Genetic Map of Lupinus angustifolius with the Genome Sequence of the Model Legume, Lotus japonicus , 2010, DNA research : an international journal for rapid publication of reports on genes and genomes.

[10]  Rajeev K. Varshney,et al.  Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome , 2010, Theoretical and Applied Genetics.

[11]  K. Siddique,et al.  Mapping a major gene for growth habit and QTLs for ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum , 2010, Euphytica.

[12]  Christian Jung,et al.  Flowering time control and applications in plant breeding. , 2009, Trends in plant science.

[13]  S. Jackson,et al.  Three Sequenced Legume Genomes and Many Crop Species: Rich Opportunities for Translational Genomics , 2009, Plant Physiology.

[14]  J. Sjödin Induced morphological variation in Vicia faba L. , 2009 .

[15]  M. Purugganan,et al.  Candidate Gene Association Mapping of Arabidopsis Flowering Time , 2009, Genetics.

[16]  Thomas Bataillon,et al.  A comparative view of the evolution of grasses under domestication. , 2009, The New phytologist.

[17]  Claire L. Knowles,et al.  Update on the genetic control of flowering in garden pea. , 2009, Journal of experimental botany.

[18]  B. Román,et al.  Confirmation of QTLs controlling Ascochyta fabae resistance in different generations of faba bean (Vicia faba L.) , 2009 .

[19]  N. Young,et al.  Translating Medicago truncatula genomics to crop legumes. , 2009, Current opinion in plant biology.

[20]  P. Winter,et al.  Genetic analysis of agronomic traits in a wide cross of chickpea , 2009 .

[21]  B. Román,et al.  Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across environments and generations , 2009, Theoretical and Applied Genetics.

[22]  M. Moreno,et al.  Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with disease resistance , 2009, Theoretical and Applied Genetics.

[23]  M. Kontturi,et al.  Legumes in Finnish agriculture: history, present status and future prospects , 2008 .

[24]  James K. Hane,et al.  Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris , 2008, BMC Genomics.

[25]  P. Barre,et al.  Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula , 2008, Theoretical and Applied Genetics.

[26]  M. Moreno,et al.  Development of a new diagnostic marker for growth habit selection in faba bean (Vicia faba L.) breeding , 2007, Theoretical and Applied Genetics.

[27]  P. García,et al.  Identification of quantitative trait loci (QTL) for plant structure, growth habit and yield in lentil , 2007 .

[28]  T. Izawa,et al.  Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. , 2007, Journal of experimental botany.

[29]  Baohui Liu,et al.  QTL Mapping of Domestication-related Traits in Soybean (Glycine max) , 2007, Annals of botany.

[30]  J. Gil,et al.  Genetic analysis of seed size, yield and days to flowering in a chickpea recombinant inbred line population derived from a Kabuli × Desi cross , 2007 .

[31]  Satoshi Tabata,et al.  Quantitative trait locus analysis of multiple agronomic traits in the model legume Lotus japonicus. , 2007, Genome.

[32]  H. Phan,et al.  The First Genetic and Comparative Map of White Lupin (Lupinus albus L.): Identification of QTLs for Anthracnose Resistance and Flowering Time, and a Locus for Alkaloid Content , 2007, DNA research : an international journal for rapid publication of reports on genes and genomes.

[33]  P. Barre,et al.  Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula , 2007, Theoretical and Applied Genetics.

[34]  Z. Šatović,et al.  Identification and characterization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). , 2006, Genome.

[35]  B. Roe,et al.  Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes , 2006, Proceedings of the National Academy of Sciences.

[36]  H. Phan,et al.  Differences in syntenic complexity between Medicago truncatula with Lens culinaris and Lupinus albus. , 2006, Functional plant biology : FPB.

[37]  Kevin F. Smith,et al.  Gene-associated single nucleotide polymorphism discovery in perennial ryegrass (Lolium perenne L.) , 2006, Molecular Genetics and Genomics.

[38]  Matthew Bellgard,et al.  The first gene-based map of Lupinus angustifolius L.-location of domestication genes and conserved synteny with Medicago truncatula , 2006, Theoretical and Applied Genetics.

[39]  P. Winter,et al.  Chickpea molecular breeding: New tools and concepts , 2006, Euphytica.

[40]  J. C. Sillero,et al.  Faba bean breeding for resistance against biotic stresses: Towards application of marker technology , 2006, Euphytica.

[41]  C. Rameau,et al.  Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula , 2006, Theoretical and Applied Genetics.

[42]  P. Taberlet,et al.  Genotyping errors: causes, consequences and solutions , 2005, Nature Reviews Genetics.

[43]  J. C. Sillero,et al.  QTL Detection for Agronomic Traits in Faba Bean (Vicia faba L.) , 2005 .

[44]  B. Roe,et al.  Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana , 2005, BMC Plant Biology.

[45]  T. Huguet,et al.  Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops , 2005, Theoretical and Applied Genetics.

[46]  R. Shoemaker,et al.  Bridging Model and Crop Legumes through Comparative Genomics , 2005, Plant Physiology.

[47]  T. Ellis,et al.  Comparative mapping between Medicago sativa and Pisum sativum , 2004, Molecular Genetics and Genomics.

[48]  Hong-Kyu Choi,et al.  A Sequence-Based Genetic Map of Medicago truncatula and Comparison of Marker Colinearity with M. sativa , 2004, Genetics.

[49]  S. Tabata,et al.  Exploitation of colinear relationships between the genomes of Lotus japonicus, Pisum sativum and Arabidopsis thaliana, for positional cloning of a legume symbiosis gene , 2004, Theoretical and Applied Genetics.

[50]  J. Macas,et al.  Development and Characterization of Microsatellite Markers from Chromosome 1-Specific DNA Libraries of Vicia Faba , 2002, Biologia Plantarum.

[51]  I. Lejeune-Hénaut,et al.  Genetic studies of selection criteria for productive and stable peas , 2002, Euphytica.

[52]  Z. Šatović,et al.  Genetic mapping of new morphological, isozyme and RAPD markers in Vicia faba L. using trisomics , 1996, Theoretical and Applied Genetics.

[53]  Z. Šatović,et al.  Genetics and mapping of new isozyme loci in Vicia faba L using trisomics , 1995, Theoretical and Applied Genetics.

[54]  J. Fuchs,et al.  Localization of seed protein genes on metaphase chromosomes ofVicia faba via fluorescencein situ hybridization , 1995, Chromosome Research.

[55]  J. Macas,et al.  Localization of seed protein genes on flow-sorted field bean chromosomes , 1993, Chromosome Research.

[56]  N. Weeden,et al.  Linkage among isozyme, RFLP and RAPD markers in Vicia faba , 1993, Theoretical and Applied Genetics.

[57]  J. Greilhuber Heterogeneity of heterochromatin in plants: Comparison of Hy- and C-bands inVicia faba , 1975, Plant Systematics and Evolution.

[58]  J. Cubero On the evolution of Vicia faba L. , 2004, Theoretical and Applied Genetics.

[59]  J. C. Sillero,et al.  Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean (Vicia faba L). , 2004, Theoretical and Applied Genetics.

[60]  D. Rubiales,et al.  Locating genes associated with Ascochyta fabae resistance in Vicia faba , 2003 .

[61]  J. Macas,et al.  Development of a composite map in Vicia faba, breeding applications and future prospects , 2003, Theoretical and Applied Genetics.

[62]  D. Rubiales,et al.  Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk.) resistance in faba bean (Vicia faba L.). , 2002, Genome.

[63]  H. Cai,et al.  QTL clusters reflect character associations in wild and cultivated rice , 2002, Theoretical and Applied Genetics.

[64]  T. Michaels,et al.  Genetic Mapping of Agronomic Traits in Common Bean , 2002 .

[65]  Shu Huang,et al.  Cloning and characterization of NBS-LRR class resistance-gene candidate sequences in citrus , 2000, Theoretical and Applied Genetics.

[66]  Z B Zeng,et al.  Estimating the genetic architecture of quantitative traits. , 1999, Genetical research.

[67]  Z. Zeng,et al.  Multiple interval mapping for quantitative trait loci. , 1999, Genetics.

[68]  J. Macas,et al.  Development of a genetic composite map of Vicia faba using F2 populations derived from trisomic plants , 1999, Theoretical and Applied Genetics.

[69]  A. Sarker,et al.  Inheritance and Linkage Relationships of Days to Flower and Morphological Loci in Lentil (Lens culinaris Medikus subsp. culinaris) , 1999 .

[70]  Z. Šatović,et al.  Brief communication. New isozyme loci in faba bean (Vicia faba L.): genetic analysis and mapping using trisomics , 1998 .

[71]  M. Soller,et al.  A Simple Method to Calculate Resolving Power and Confidence Interval of QTL Map Location , 1997, Behavior genetics.

[72]  C. Simon,et al.  Construction of a Chickpea Linkage Map and Its Comparison With Maps of Pea and Lentil , 1997 .

[73]  R. Doerge,et al.  Permutation tests for multiple loci affecting a quantitative character. , 1996, Genetics.

[74]  R. Doerge,et al.  Empirical threshold values for quantitative trait mapping. , 1994, Genetics.

[75]  F. Muehlbauer,et al.  Extensive Conservation of Linkage Relationships Between Pea and Lentil Genetic Maps , 1992 .

[76]  J. Wendel,et al.  Visualization and Interpretation of Plant Isozymes , 1989 .

[77]  T. R. Dudley,et al.  Isozymes in Plant Biology , 1989, Springer Netherlands.

[78]  M. Daly,et al.  MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. , 1987, Genomics.

[79]  E. Wagner,et al.  Activity of glyceraldehyde-3-phosphate dehydrogenase isozymes during photoperiodic floral induction in spinach leaves , 1987 .

[80]  A. Orr CHANGES IN GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE ACTIVITY IN SHOOT APICAL MERISTEMS OF BRASSICA CAMPESTRIS DURING TRANSITION TO FLOWERING' , 1987 .

[81]  J. Cubero Interspecific hybridization in Vicia , 1982 .

[82]  L. Gottlieb ENZYME DIFFERENTIATION AND PHYLOGENY IN CLARKIA FRANCISCANA, C. RUBICUNDA AND C. AMOENA , 1973, Evolution; international journal of organic evolution.

[83]  Js Gladstones Selection for economic characters in Lupinus angustifolius and L. digitatus. 1. Non shattering pods , 1967 .

[84]  D. D. Kosambi The estimation of map distances from recombination values. , 1943 .