The influence of heavily doped buried layer implants on electrostatic discharge (ESD), latchup, and a silicon germanium heterojunction bipolar transistor in a BiCMOS SiGe technology

This paper will demonstrate the effect of heavily doped buried layers (HDBL) on electrostatic discharge protection, latchup, and silicon germanium (SiGe) heterojunction bipolar transistors (HBT). Heavily doped buried layers (HDBL) implants, in prior publications, have demonstrated improvements in latchup robustness in low-doped substrate wafer technology. The influence of HDBL on MOSFET ESD protection has also been demonstrated. In this paper, the focus is the influence of HDBL implants on BiCMOS SiGe HBT devices and derivatives from a functionality, ESD and latchup perspective in a BiCMOS SiGe technology as well as relevance to RF and MS CMOS technology. Experimental results will be shown for different heavily doped buried layer implant doses and energies.

[1]  R.R. Troutman,et al.  Transmission line modeling of substrate resistances and CMOS latchup , 1986, IEEE Transactions on Electron Devices.

[2]  A. Watson,et al.  The influence of deep trench and substrate resistance on the latchup robustness in a BiCMOS silicon germanium technology , 2004, 2004 IEEE International Reliability Physics Symposium. Proceedings.

[3]  P. Stolk,et al.  Formation of extended defects in silicon by high energy implantation of B and P , 1996 .

[4]  A. Joseph,et al.  Electrostatic discharge characterization of epitaxial-base silicon-germanium heterojunction bipolar transistors , 2000, Electrical Overstress/Electrostatic Discharge Symposium Proceedings 2000 (IEEE Cat. No.00TH8476).

[5]  K. K. Bourdelle,et al.  Evaluation of high dose, high energy boron implantation into Cz substrates for epi-replacement in CMOS technology , 2001 .

[6]  A. Botula,et al.  Silicon Germanium heterojunction bipolar transistor ESD power clamps and the Johnson Limit , 2001, 2001 Electrical Overstress/Electrostatic Discharge Symposium.

[7]  T. E. Haynes,et al.  Iron gettering mechanisms in silicon , 1996 .

[8]  Alan J. Weger,et al.  Transmission line pulse picosecond imaging circuit analysis methodology for evaluation of ESD and latchup , 2003, 2003 IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual..

[9]  Ronald R. Troutman Latchup in CMOS Technology , 1986 .

[10]  J. Slinkman,et al.  Retrograde well and epitaxial thickness optimization for shallow- and deep-trench collar merged isolation and node trench SPT DRAM cell and CMOS logic technology , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[11]  Hsiao-Yi Lin,et al.  Improvement of CMOS latch-up immunity using a high energy implanted buried layer , 1989 .

[12]  C. Hu,et al.  Device characteristics of mosfets in MeV implanted substrates , 1987 .

[13]  K. Bourdelle,et al.  The effect of as-implanted damage on the microstructure of threading dislocations in MeV implanted silicon , 1999 .

[14]  J. F. Leavy,et al.  Radiation-Induced Integrated Circuit Latchup , 1969 .

[15]  C. Duvvury,et al.  A new I/O signal latchup phenomenon in voltage tolerant ESD protection circuits , 2003, 2003 IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual..

[16]  A. Joseph,et al.  Electrostatic discharge and high current pulse characterization of epitaxial-base silicon-germanium heterojunction bipolar transistors , 2000, 2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059).

[17]  Steven H. Voldman,et al.  MeV implants boost device design , 1995 .

[18]  R. Troutman,et al.  Epitaxial layer enhancement of n-well guard rings for CMOS circuits , 1983, IEEE Electron Device Letters.

[19]  B. L. Gregory,et al.  Latch-Up in CMOS Integrated Circuits , 1973 .

[20]  D. K. Nichols,et al.  Latchup in CMOS Integrated Circuits , 1985 .

[21]  Ronald R. Troutman,et al.  Latchup in CMOS Technology: The Problem and Its Cure , 1986 .

[22]  W. Dong,et al.  New observance and analysis of various guard-ring structures on latch-up hardness by backside photo emission image , 2003, 2003 IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual..

[23]  Tung-Yang Chen,et al.  Investigation of ESD devices in 0.18 /spl mu/m SiGe BiCMOS process , 2003, 2003 IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual..

[24]  W. J. Dennehy,et al.  Transient Radiation Response of Complementary-Symmetry MOS Integrated Circuits , 1969 .

[25]  Steven H. Voldman,et al.  Latchup in CMOS technology , 1998, 1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No.98CH36173).

[26]  W. Morris,et al.  Latchup in CMOS , 2003, 2003 IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual..

[27]  G.J. Hu A better understanding of CMOS latch-up , 1984, IEEE Transactions on Electron Devices.

[28]  J. Harter,et al.  Comparison of latch-up in p- and n-well CMOS circuits , 1983, 1983 International Electron Devices Meeting.

[29]  T. Nakamura,et al.  Latch-up immunity against noise pulses in a CMOS double well structure , 1983, 1983 International Electron Devices Meeting.

[31]  Steven H. Voldman Variable-trigger voltage ESD Power Clamps for mixed voltage applications using a 120 GHz/100 GHz (fT/fMAX) Silicon Germanium Heterojunction Bipolar Transistor with Carbon incorporation , 2002, 2002 Electrical Overstress/Electrostatic Discharge Symposium.

[32]  K. K. Bourdelle,et al.  Epi-replacement in CMOS technology by high dose, high energy boron implantation into Cz substrates , 2000, 2000 International Conference on Ion Implantation Technology Proceedings. Ion Implantation Technology - 2000 (Cat. No.00EX432).