Translational lemmas for DLOGTIME-uniform circuits, alternating TMs, and PRAMs

We present translational lemmas for the three standard models of parallel computation, and apply them to obtain tight hierarchy results. It is shown that, for arbitrarily small rational constant $$\epsilon > 0$$ , (i) there is a language which can be accepted by a $$U_{\rm E}$$ -uniform circuit family of depth $$c(1+\epsilon)(\log n)^{r_1}$$ and size $$dn^{r_2(1+\epsilon)}$$ but not by any $$U_{\rm E}$$ -uniform circuit family of depth $$c(\log n)^{r_1}$$ and size $$dn^{r_2}$$ , (ii) there is a language which can be accepted by a $$c(9+\epsilon)(\log n)^{r_1}$$ -time $$d(4+\epsilon)\log n$$-space ATM with l worktapes but not by any $$c(\log n)^{r_1}$$ -time $$d\log n$$ -space ATM with the same l worktapes if the number of tape symbols is fixed, and (iii) there is a language which can be accepted by a $$c(1+\epsilon)(\log n)^{r_1}$$ -time PRAM with $$dn^{r_2(1+\epsilon)}$$ processors but not by any $$c(\log n)^{r_1}$$ -time PRAM with $$dn^{r_2}$$ processors. Here, c > 0, d ≥ 1, r1 > 1, and r2 ≥ 1 are arbitrary rational constants, and l ≥ 2 is an arbitrary integer.

[1]  Maurice Margenstern,et al.  Time and Space Complexity Classes of Hyperbolic Cellular Automata , 2004, IEICE Trans. Inf. Syst..

[2]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[3]  Uzi Vishkin,et al.  Simulation of Parallel Random Access Machines by Circuits , 1984, SIAM J. Comput..

[4]  Stephen A. Cook,et al.  Time-bounded random access machines , 1972, J. Comput. Syst. Sci..

[5]  Oscar H. Ibarra,et al.  Sequential Machine Characterizations of Trellis and Cellular Automata and Applications , 1985, SIAM J. Comput..

[6]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[7]  Stanislav Zák,et al.  A Turing Machine Time Hierarchy , 1983, Theor. Comput. Sci..

[8]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[9]  Oscar H. Ibarra,et al.  Hierarchies of Turing Machines with Restricted Tape Alphabet Size , 1975, J. Comput. Syst. Sci..

[10]  Katsunobu Imai,et al.  Constructible functions in cellular automata and their applications to hierarchy results , 2002, Theor. Comput. Sci..

[11]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[12]  Stanislav Zák A Turing machine space hierarchy , 1979, Kybernetika.

[13]  Kazuo Iwama,et al.  Parallel complexity hierarchies based on PRAMs and DLOGTLME-uniform circuits , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[14]  Oscar H. Ibarra A Hierarchy Theorem for Polynomial-Space Recognition , 1974, SIAM J. Comput..

[15]  Wolfgang J. Paul,et al.  On time hierarchies , 1977, STOC '77.

[16]  Richard Edwin Stearns,et al.  Hierarchies of memory limited computations , 1965, SWCT.

[17]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[18]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[19]  Walter W. Kirchherr A Hierarchy Theorem for Pram-Based Complexity Classes , 1988, FSTTCS.

[20]  Martin Fürer,et al.  The tight deterministic time hierarchy , 1982, STOC '82.

[21]  Stephen A. Cook,et al.  A hierarchy for nondeterministic time complexity , 1972, J. Comput. Syst. Sci..