Interaction of Phase Transformation and Magnetic Properties of Heusler Alloys: A Density Functional Theory Study

The structural, electronic, and magnetic properties of functional Ni-Mn-Z (Z = Ga, In, Sn, and Sb) Heusler alloys are studied by first-principles and Monte Carlo tools. The ab initio calculations give a basic understanding of the underlying physics that are associated with the complex magnetic behavior arising from the competition of ferromagnetic and antiferromagnetic interactions with increasing chemical disorder in the super cell. This complex magnetic ordering is the driving mechanism of structural transformations. It also essentially determines the multifunctional properties of the Heusler alloys such as magnetic shape-memory and magnetocaloric effects. The thermodynamic properties can be calculated by using the ab initio magnetic exchange parameters in finite-temperature Monte Carlo simulations. The experimental entropy and specific heat changes across the magnetostructural transition are accurately reproduced by the Monte Carlo simulations. The predictive power of the first-principles calculations allows one to optimize the functional features by choosing optimal compositions.

[1]  Alexei Sozinov,et al.  12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite , 2013 .

[2]  K.H.J. Buschow,et al.  A review on Mn based materials for magnetic refrigeration: Structure and properties , 2008 .

[3]  E. Villa,et al.  Pressure effects on the magnetocaloric properties of Ni-rich and Mn-rich Ni2MnGa alloys , 2007 .

[4]  P. Ranke,et al.  Monte Carlo calculations of the magnetocaloric effect in RAl2 (R=Dy,Er) , 2006 .

[5]  P. Ranke,et al.  Monte Carlo calculations of the magnetocaloric effect inGd5(SixGe1−x)4compounds , 2005 .

[6]  P. Ranke,et al.  Monte Carlo calculations of the magnetocaloric effect in (Gd0.6Tb0.4)5Si4(Gd0.6Tb0.4)5Si4 , 2007 .

[7]  P. Entel,et al.  Composition-Dependent Basics of Smart Heusler Materials from First- Principles Calculations , 2011 .

[8]  P. J. Webster,et al.  Magnetic order and phase transformation in Ni2MnGa , 1984 .

[9]  M. Acet,et al.  Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  T. Takagi,et al.  Adiabatic temperature change at first-order magnetic phase transitions:Ni2.19Mn0.81Gaas a case study , 2008 .

[11]  P. Entel,et al.  First-principles investigation of chemical and structural disorder in magnetic Ni 2 Mn 1 + x Sn 1 − x Heusler alloys , 2012 .

[12]  P. Entel,et al.  Monte Carlo modeling of exchange bias effect in Ni50Mn25+xSb25−x Heusler alloys , 2011 .

[13]  L. Schultz,et al.  Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys , 2012 .

[14]  Mahmud Tareq Hassan Khan,et al.  Magnetocaloric Properties of Ni2Mn1−xCuxGa , 2006 .

[15]  Carlo Paolo Sasso,et al.  Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals , 2005 .

[16]  V. V. Kokorin,et al.  The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system , 1995 .

[17]  J. Gutiérrez,et al.  Magnetic influence on the martensitic transformation entropy in Ni-Mn-In metamagnetic alloy , 2013 .

[18]  F. Albertini,et al.  Giant entropy change at the co-occurrence of structural and magnetic transitions in the Ni Mn Ga Heusler alloy , 2002, cond-mat/0209564.

[19]  F. Albertini,et al.  Magnetocaloric Properties and Magnetic Anisotropy by Tailoring Phase Transitions in NiMnGa Alloys , 2008 .

[20]  Guangheng Wu,et al.  Experimental and theoretical investigations of the magnetocaloric effect of Ni2.15Mn0.85-xCuxGa (x= 0.05,0.07) alloys , 2008 .

[21]  Ján Minár,et al.  Calculating condensed matter properties using the KKR-Green's function method—recent developments and applications , 2011 .

[22]  X. Chaud,et al.  Large Magneto-Caloric Effect in Ni–Co–Mn–In systems at room temperature , 2010 .

[23]  A. A. Likhachev,et al.  Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase , 2002 .

[24]  T. Takagi,et al.  Structural and magnetic phase transitions in shape-memory alloys Ni 2+x Mn 1-x Ga , 1999 .

[25]  X. Moya,et al.  Structural properties and magnetic interactions in martensitic Ni-Mn-Sb alloys , 2009 .

[26]  P. Entel,et al.  Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X=In,Sn,Sb) , 2008 .

[27]  N. Oliveira,et al.  Theoretical calculations of the magnetocaloric effect in La ( Fe x Si 1 - x ) 13 , 2006 .

[28]  N. Singh,et al.  Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles , 2013 .

[29]  C. Kirchlechner,et al.  In-situ observation of stress-induced stochastic twin boundary motion in off stoichiometric NiMnGa single crystals , 2013 .

[30]  P. Ranke,et al.  Magnetocaloric effect in (Gd x Tb 1-x ) 5 Si 4 by Monte Carlo simulations , 2006 .

[31]  The magnetocaloric effect in R5Si4 (R = Gd, Tb): a Monte Carlo calculation , 2006 .

[32]  M. Wuttig,et al.  Adaptive modulations of martensites. , 2009, Physical review letters.

[33]  P. Entel,et al.  Basic Properties of Magnetic Shape-Memory Materials from First-Principles Calculations , 2012, Metallurgical and Materials Transactions A.

[34]  Guangheng Wu,et al.  Magnetic entropy changes of NiMnGa alloys both on the heating and cooling processes , 2007 .

[35]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[36]  L. Sandratskii,et al.  Role of conduction electrons in mediating exchange interactions in Mn-based Heusler alloys , 2007, 0712.0158.

[37]  X. Chaud,et al.  Large inverse magnetocaloric effect in Ni45Co5Mn37.5In12.5 single crystal above 300 K , 2010 .

[38]  E. Villa,et al.  Phase transitions and magnetic entropy change in Mn-rich Ni2MnGa alloys , 2006 .

[39]  P. Entel,et al.  Monte Carlo simulations of the magnetocaloric effect in magnetic Ni–Mn–X (X = Ga, In) Heusler alloys , 2011 .

[40]  R. Ramanujan,et al.  Magnetic glass in shape memory alloy: Ni45Co5Mn38Sn12 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  R. Ranjan,et al.  Phase diagram and electronic structure of Ni 2+x Mn 1-x Ga , 2006 .

[42]  P. Ranke,et al.  Magnetocaloric effect in rare-earth-based compounds : A Monte Carlo study , 2006 .

[43]  J. Feuchtwanger,et al.  Magnetic moment and chemical order in off-stoichiometric Ni–Mn–Ga ferromagnetic shape memory alloys , 2011 .

[44]  M. Napoletano,et al.  Composition dependence of magnetic and magnetothermal properties of Ni-Mn-Ga shape memory alloys , 2004 .

[45]  M. Pasquale,et al.  Direct measurements of the entropy change and its history dependence in Ni-Mn-Ga alloys , 2008 .

[46]  J. Neugebauer,et al.  Understanding the phase transitions of the Ni2MnGa magnetic shape memory system from first principles. , 2009, Physical review letters.

[47]  R. James,et al.  Small-angle Neutron Scattering Study of Magnetic Ordering and Inhomogeneity Across the Martensitic Phase Transformation in Ni50-xCoxMn40Sn10 Alloys , 2012 .

[48]  V. Chernenko Compositional instability of β-phase in Ni-Mn-Ga alloys , 1999 .

[49]  S. Gama,et al.  Theoretical description of the colossal entropic magnetocaloric effect : Application to MnAs , 2006 .

[50]  A. Sozinov,et al.  Highly mobile type II twin boundary in Ni-Mn-Ga five-layered martensite , 2011 .

[51]  H. Hänninen,et al.  Twin interaction and large magnetoelasticity in Ni-Mn-Ga single crystals , 2011 .

[52]  X. Moya,et al.  Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys , 2006 .

[53]  Ab Initio Study of Magnetic Properties and Phase Diagram of Ni-Mn-Ga Heusler Alloys , 2013 .

[54]  V. Amaral,et al.  A mean-field scaling method for first- and second-order phase transition ferromagnets and its application in magnetocaloric studies , 2007 .

[55]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[56]  Mahmud Tareq Hassan Khan,et al.  Phase transitions and corresponding magnetic entropy changes in Ni2Mn0.75Cu0.25−xCoxGa Heusler alloys , 2007 .

[57]  Gwyn P. Williams,et al.  A criterion for enhancing the giant magnetocaloric effect: (Ni–Mn–Ga)—a promising new system for magnetic refrigeration , 2004 .

[58]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[59]  A. Planes,et al.  Magnetocaloric effect in metamagnetic systems , 2007 .

[60]  H. Ebert,et al.  First-principles and Monte Carlo study of magnetostructural transition and magnetocaloric properties of Ni2+xMn1−xGa , 2010 .

[61]  V. Pecharsky,et al.  Thirty years of near room temperature magnetic cooling: Where we are today and future prospects , 2008 .

[62]  R. Arróyave,et al.  A First‐Principles Investigation of the Compositional Dependent Properties of Magnetic Shape Memory Heusler Alloys , 2012 .