Unsupervised edge detection and noise detection from a single image

Edge detection is one of the oldest image processing areas that are still active. An important current area of study involves development of unsupervised edge detection algorithms. In this work a paradigm of unsupervised edge detection is proposed that is based on the computational edge detection approach introduced by Canny. It is a simple and computationally cheap technique that achieves non-trivial results. Additionally as a byproduct it generates information about the content and severity of noise in the image. The proposed technique uses a fast edge detector to generate the initial edge mask and subsequently optimizes that by studying the behavior of a proposed details estimator. The study of the same estimator also offers insight about the noise characteristics of the image.

[1]  Francisco José Madrid-Cuevas,et al.  Determining Hysteresis Thresholds for Edge Detection by Combining the Advantages and Disadvantages of Thresholding Methods , 2010, IEEE Transactions on Image Processing.

[2]  Richard Szeliski,et al.  Automatic Estimation and Removal of Noise from a Single Image , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Francisco José Madrid-Cuevas,et al.  Automatic generation of consensus ground truth for the comparison of edge detection techniques , 2008, Image Vis. Comput..

[4]  Tien D. Bui,et al.  Image segmentation and selective smoothing by using Mumford-Shah model , 2005, IEEE Transactions on Image Processing.

[5]  Yitzhak Yitzhaky,et al.  A Method for Objective Edge Detection Evaluation and Detector Parameter Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Sudeep Sarkar,et al.  Comparison of Edge Detectors: A Methodology and Initial Study , 1998, Comput. Vis. Image Underst..

[7]  Aishy Amer,et al.  Fast and reliable structure-oriented video noise estimation , 2005 .

[8]  Joost van de Weijer,et al.  Fast Anisotropic Gauss Filtering , 2002, ECCV.

[9]  Søren I. Olsen,et al.  Estimation of Noise in Images: An Evaluation , 1993, CVGIP Graph. Model. Image Process..

[10]  Sean Dougherty,et al.  Edge Detector Evaluation Using Empirical ROC Curves , 2001, Comput. Vis. Image Underst..

[11]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[12]  Rafael Muñoz-Salinas,et al.  A novel method to look for the hysteresis thresholds for the Canny edge detector , 2011, Pattern Recognit..

[13]  C. A. Murthy,et al.  Thresholding in edge detection: a statistical approach , 2004, IEEE Transactions on Image Processing.

[14]  Richard Szeliski,et al.  Noise Estimation from a Single Image , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Tom Chen,et al.  A real-time high performance edge detector for computer vision applications , 1997, Proceedings of ASP-DAC '97: Asia and South Pacific Design Automation Conference.

[16]  Peng-Lang Shui,et al.  Noise-robust edge detector combining isotropic and anisotropic Gaussian kernels , 2012, Pattern Recognit..

[17]  Ashok Samal,et al.  A simple method for fitting of bounding rectangle to closed regions , 2007, Pattern Recognit..

[18]  José Martínez-Aroza,et al.  A measure of quality for evaluating methods of segmentation and edge detection , 2001, Pattern Recognit..

[19]  Francisco José Madrid-Cuevas,et al.  Characterization of empirical discrepancy evaluation measures , 2004, Pattern Recognit. Lett..

[20]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  M. Vehvilainen,et al.  New method for noise estimation in images , 2005 .

[22]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  Lei Zhang,et al.  Canny edge detection enhancement by scale multiplication , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Milan Sonka,et al.  Image processing analysis and machine vision [2nd ed.] , 1999 .

[26]  Francisco José Madrid-Cuevas,et al.  Solving the process of hysteresis without determining the optimal thresholds , 2010, Pattern Recognit..

[27]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[28]  Francisco José Madrid-Cuevas,et al.  On candidates selection for hysteresis thresholds in edge detection , 2009, Pattern Recognit..

[29]  Yang Zhang,et al.  The Bayesian Operating Point of the Canny Edge Detector , 2006, IEEE Transactions on Image Processing.