Interactive comment on “Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series” by S. Leinss et al

Abstract. The snow microstructure, i.e., the spatial distribution of ice and pores, generally shows an anisotropy which is driven by gravity and temperature gradients and commonly determined from stereology or computer tomography. This structural anisotropy induces anisotropic mechanical, thermal, and dielectric properties. We present a method based on radio-wave birefringence to determine the depth-averaged, dielectric anisotropy of seasonal snow with radar instruments from space, air, or ground. For known snow depth and density, the birefringence allows determination of the dielectric anisotropy by measuring the copolar phase difference (CPD) between linearly polarized microwaves propagating obliquely through the snowpack. The dielectric and structural anisotropy are linked by Maxwell–Garnett-type mixing formulas. The anisotropy evolution of a natural snowpack in Northern Finland was observed over four winters (2009–2013) with the ground-based radar instrument "SnowScat". The radar measurements indicate horizontal structures for fresh snow and vertical structures in old snow which is confirmed by computer tomographic in situ measurements. The temporal evolution of the CPD agreed in ground-based data compared to space-borne measurements from the satellite TerraSAR-X. The presented dataset provides a valuable basis for the development of new snow metamorphism models which include the anisotropy of the snow microstructure.

[1]  G. Mccormick,et al.  Ku-band and S-band observations of the differential propagation constant in snow , 1976 .

[2]  Martin Schneebeli,et al.  Observation of isothermal metamorphism of new snow and interpretation as a sintering process , 2007 .

[3]  Takeshi Matsuoka,et al.  A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets , 2000 .

[4]  Leung Tsang Polarimetic Passive Microwave Remote Sensing of Random Discrete Scatterers and Rough Surfaces , 1991 .

[5]  Thomas Houet,et al.  Mapping snow depth in open alpine terrain from stereo satellite imagery , 2016 .

[6]  D. Polder,et al.  The effective permeability of mixtures of solids , 1946 .

[7]  Salvatore Torquato,et al.  Effective dielectric tensor for electromagnetic wave propagation in random media , 2007, 0709.1924.

[8]  Charles Werner,et al.  The snowscat ground-based polarimetric scatterometer: Calibration and initial measurements from Davos Switzerland , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[9]  Harald Johnsen,et al.  InSAR for estimation of changes in snow water equivalent of dry snow , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  Wolfgang-Martin Boerner,et al.  Statistical Aspects of Radar Polarimetry , 2004 .

[11]  P. Rüegsegger,et al.  Direct Three‐Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[12]  Sergey A. Sokratov,et al.  Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity , 2004 .

[13]  Helko Breit,et al.  TerraSAR-X technologies and first results , 2006 .

[14]  I. Hajnsek,et al.  Snow Structure Evolution Measured by Ground Based Polarimetric Phase Differences , 2014 .

[15]  I. Baker,et al.  Microstructural evolution of fine-grained layers through the firn column at Summit, Greenland , 2011, Journal of Glaciology.

[16]  L. Tsang,et al.  Modeling Active Microwave Remote Sensing of Snow Using Dense Media Radiative Transfer (DMRT) Theory With Multiple-Scattering Effects , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Jin Au Kong,et al.  Correlation function studies for snow and ice , 1981 .

[18]  T. G. Manjunath Polarimetric radar imaging of the atmosphere , 1990 .

[19]  Christian Mätzler,et al.  Microwave permittivity of dry snow , 1996, IEEE Trans. Geosci. Remote. Sens..

[20]  Martin Schneebeli,et al.  A general treatment of snow microstructure exemplified by an improved relation for the thermal conductivity , 2012 .

[21]  S. Fujita,et al.  Metamorphism of stratified firn at Dome Fuji, Antarctica: A mechanism for local insolation modulation of gas transport conditions during bubble close off , 2009 .

[22]  C. Mätzler,et al.  ERRATUM: Dielectric properties of fresh-water ice at microwave frequencies , 1987 .

[23]  Mary R. Albert,et al.  The impact of accumulation rate on anisotropy and air permeability of polar firn at a high-accumulation site , 2009, Journal of Glaciology.

[24]  Dorthe Dahl-Jensen,et al.  Densification of layered firn of the ice sheet at NEEM, Greenland , 2014 .

[25]  C. Mätzler Relation Between Grain Size and Correlation Length of Snow , 2002 .

[26]  Timothy J. Garrett,et al.  Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall , 2012 .

[27]  W. T. Pfeffer,et al.  Temperature gradient and initial snow density as controlling factors in the formation and structure of hard depth hoar , 2002, Journal of Glaciology.

[28]  A. Wiesmann,et al.  Microwave Emission Model of Layered Snowpacks , 1999 .

[29]  Leung Tsang,et al.  Dense medium radiative transfer theory for two scattering layers with a Rayleigh distribution of particle sizes , 1993, IEEE Trans. Geosci. Remote. Sens..

[30]  Matthew F. McCabe,et al.  Spatial and temporal variability in seasonal snow density , 2013 .

[31]  Vincent Noel,et al.  A global view of horizontally oriented crystals in ice clouds from Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) , 2010 .

[32]  Norman Wagner,et al.  Permittivity of Ice at Radio Frequencies: Part II. Artificial and Natural Polycrystalline Ice , 2012 .

[33]  Christian Mätzler,et al.  Applications of the interaction of microwaves with the natural snow cover , 1987 .

[34]  N. Hargreaves The polarization of radio signals in the radio echo sounding of ice sheets , 1977 .

[35]  Takeshi Matsuoka,et al.  Effect of temperature on dielectric properties of ice in the range 5-39 GHz , 1996 .

[36]  S. Torquato Random Heterogeneous Materials , 2002 .

[37]  Hideo Maeno,et al.  Radio-wave depolarization and scattering within ice sheets: a matrix-based model to link radar and ice-core measurements and its application , 2006, Journal of Glaciology.

[38]  H. Löwe,et al.  Interfacial and structural relaxations of snow under isothermal conditions , 2011, Journal of Glaciology.

[39]  Irena Hajnsek,et al.  Snow Water Equivalent of Dry Snow Measured by Differential Interferometry , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[40]  Fawwaz Ulaby,et al.  Relating Polaization Phase Difference of SAR Signals to Scene Properties , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Andrew J. Heymsfield,et al.  Radar Scattering from Ice Aggregates Using the Horizontally Aligned Oblate Spheroid Approximation , 2012 .

[42]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[43]  S. Saito,et al.  A Precision Resonance Method for Measuring Dielectric Properties of Low-Loss Solid Materials in the Microwave Region , 1956, Proceedings of the IRE.

[44]  J. Kong,et al.  Analytical approximations in multiple scattering of electromagnetic waves by aligned dielectric spheroids. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  Rolf Werninghaus,et al.  The TerraSAR-X Mission and System Design , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Ghislain Picard,et al.  Microwave scattering coefficient of snow in MEMLS and DMRT-ML revisited: the relevance of sticky hard spheres and tomography-based estimates of stickiness , 2015 .

[47]  R G Jones,et al.  The measurement of dielectric anisotropy using a microwave open resonator , 1976 .

[48]  Inferring Fall Attitudes of Pristine Dendritic Crystals from Polarimetric Radar Data , 2005 .

[49]  Takeshi Matsuoka,et al.  Precise measurement of dielectric anisotropy in ice Ih at 39 GHz , 1997 .

[50]  Fred A. Kruse,et al.  Determination of snow depth using elevation differences determined by interferometric SAR (InSAR) , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[51]  Martin Schneebeli,et al.  Density, specific surface area, and correlation length of snow measured by high‐resolution penetrometry , 2015 .

[52]  S. R. D. Roscoat,et al.  Study of a temperature gradient metamorphism of snow from 3D images: time evolution of microstructures, physical properties and their associated anisotropy , 2013 .

[53]  Christian Geindreau,et al.  3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy , 2012 .

[54]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[55]  Kazuya Takahashi,et al.  Densification of layered firn in the ice sheet at Dome Fuji, Antarctica , 2015, Journal of Glaciology.

[56]  Larry Wilen,et al.  Effects of Birefringence Within Ice Sheets on Obliquely Propagating Radio Waves , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[57]  T. Painter,et al.  Lidar measurement of snow depth: a review , 2013, Journal of Glaciology.

[58]  Jeff Dozier,et al.  Stereological characterization of dry Alpine snow for microwave remote sensing , 1989 .

[59]  N. Hargreaves The Radio-Frequency Birefringence of Polar Ice , 1978, Journal of Glaciology.

[60]  P. Holmlund,et al.  Dielectric permittivity of snow measured along the route traversed in the Japanese–Swedish Antarctic Expedition 2007/08 , 2010, Annals of Glaciology.

[61]  Urs Wegmüller,et al.  Mobile X- to Ku-band Scatterometer in Support of the CoRe-H20 Mission , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[62]  K. Sarabandi Derivation of phase statistics from the Mueller matrix , 1992 .

[63]  Kamal Sarabandi,et al.  Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces , 2002, IEEE Trans. Geosci. Remote. Sens..

[64]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[65]  C. Ginzler,et al.  Snow depth mapping in high-alpine catchments using digital photogrammetry , 2015 .

[66]  H. Löwe,et al.  X-ray microtomography analysis of isothermal densification of new snow under external mechanical stress , 2013, Journal of Glaciology.

[67]  Martin Schneebeli,et al.  Evolution of crystal orientation in snow during temperature gradient metamorphism , 2013, Journal of Glaciology.

[68]  Irena Hajnsek,et al.  Snow Height Determination by Polarimetric Phase Differences in X-Band SAR Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[69]  Martin Schneebeli,et al.  Snow metamorphism under alternating temperature gradients: Morphology and recrystallization in surface snow , 2009 .

[70]  David G. Long,et al.  WindSat Passive Microwave Polarimetric Signatures of the Greenland Ice Sheet , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[71]  Christian Mätzler,et al.  Microwave permittivity of dry sand , 1996, IEEE Trans. Geosci. Remote. Sens..

[72]  Susanne Crewell,et al.  Snow particle orientation observed by ground‐based microwave radiometry , 2012 .

[73]  Takeshi Matsuoka,et al.  Dielectric anisotropy in ice Ih at 9.7 GHz , 1993 .

[74]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave: A revised compilation , 2008 .

[75]  V. Chandrasekar,et al.  Characterizing falling snow using multifrequency dual‐polarization measurements , 2014 .

[76]  Leung Tsang,et al.  Modeling Active Microwave Remote Sensing of Snow Using Dense Media Radiative Transfer (DMRT) Theory With Multiple-Scattering Effects , 2007, IEEE Trans. Geosci. Remote. Sens..

[77]  Nigel Woodcock,et al.  Specification of fabric shapes using an eigenvalue method , 1977 .

[78]  J. B. Mead,et al.  Polarimetric backscatter from fresh and metamorphic snowcover at millimeter wavelengths , 1996 .

[79]  A. Sihvola Mixing Rules with Complex Dielectric Coefficients , 2000 .

[80]  S. Cloude Polarisation: Applications in Remote Sensing , 2009 .

[81]  G. Gauthier,et al.  The effect of snow cover on lemming population cycles in the Canadian High Arctic , 2013, Oecologia.

[82]  D. Dahl-Jensen,et al.  Ice microstructure and fabric: an up to date approach for measuring textures , 2006 .

[83]  Kenneth C. Jezek,et al.  Dielectric permittivity and scattering measurements of Greenland firn at 26.5-40 GHz , 1994, IEEE Trans. Geosci. Remote. Sens..

[84]  Christian Mätzler,et al.  Autocorrelation functions of granular media with free arrangement of spheres, spherical shells or ellipsoids , 1997 .

[85]  R. B. Alley Texture of polar firn for remote sensing , 1987 .

[86]  Martti Hallikainen,et al.  Extinction Behavior of Dry Snow in the 18-to 90-GHz Range , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[87]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[88]  Brigitte Maier,et al.  Electrodynamics Of Continuous Media , 2016 .

[89]  E. Weber Hoen,et al.  Penetration depths inferred from interferometric volume decorrelation observed over the Greenland Ice Sheet , 2000, IEEE Trans. Geosci. Remote. Sens..

[90]  S. Evans,et al.  Dielectric Properties of Ice and Snow–a Review , 1965, Journal of Glaciology.

[91]  Irena Hajnsek,et al.  Polarimetric Decomposition of L-Band PolSAR Backscattering Over the Austfonna Ice Cap , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[92]  Martin Schneebeli,et al.  Snow replica method for three-dimensional X-ray microtomographic imaging , 2009, Journal of Glaciology.

[93]  Ari Henrik Sihvola,et al.  How strict are theoretical bounds for dielectric properties of mixtures? , 2001, IEEE Trans. Geosci. Remote. Sens..

[94]  Salvatore Torquato,et al.  Trapping constant, thermal conductivity, and the microstructure of suspensions of oriented spheroids , 1991 .

[95]  Sergey A. Sokratov,et al.  A microstructural approach to model heat transfer in snow , 2005 .