Wave Propagation Analysis using High-Order Finite Element Methods: Spurious Oscillations excited by Internal Element Eigenfrequencies

f ultrasonic guided waves is still a very demanding task. Because of the high-frequency regime both a fine spatia l and temporal discretization is required. To minimize the numerical costs, efficient and robust algorithms ought t o be developed. One promising idea is therefore to focus on high-order finite element methods (ho-FEM). The current article investigates the behavior of thep-version of the finite element method (p-FEM) and the spectral element method (SEM) with respect to the existence of spurio us oscillations in the solution. Convergence studies have shown that it is possible to observe non-physical os cillations under certain conditions. These parasitic vibrations, however, significantly deteriorate the accura cy of the simulation. For this reason, we analyse this phenomenon in detail and propose solutions to avoid its occurre nce. Without loss of generality, we employ a two-dimensional pla ne strain model to derive a guideline as to how to avoid these spurious oscillations, placing a special empha sis on the relation between the element size, the polynomial degree of the high-order shape functions and the excita tion frequency. Our results show that accurate simulations are possible if t he model is generated according to the proposed methodology. Moreover, the implementation of the guidelin e into an existing finite element software is straightforward; these properties turn the method into a useful tool forpractical wave propagation analyses.

[1]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[2]  Ivo Babuska,et al.  Finite Element Solution to the Helmholtz Equation with High Wave Number Part II : The hp-version of the FEM , 2022 .

[3]  I. Babuska,et al.  Introduction to Finite Element Analysis: Formulation, Verification and Validation , 2011 .

[4]  Andrew Y. T. Leung,et al.  FOURIERp-ELEMENT FOR THE ANALYSIS OF BEAMS AND PLATES , 1998 .

[5]  Géza Seriani,et al.  Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .

[6]  K. Graff Wave Motion in Elastic Solids , 1975 .

[7]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[8]  S. P. Oliveira,et al.  DFT MODAL ANALYSIS OF SPECTRAL ELEMENT METHODS FOR ACOUSTIC WAVE PROPAGATION , 2008 .

[9]  I. A. Viktorov Rayleigh and Lamb Waves , 1967 .

[10]  Géza Seriani,et al.  3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor , 1998 .

[11]  Mark Ainsworth,et al.  Optimally Blended Spectral-Finite Element Scheme for Wave Propagation and NonStandard Reduced Integration , 2010, SIAM J. Numer. Anal..

[12]  I. Babuska,et al.  Dispersion Analysis and Error Estimation of Galerkin Finite Element Methods for the Numerical Computation of Waves , 1994 .

[13]  Mrinal K. Sen,et al.  Grid dispersion and stability criteria of some common finite-difference and finite-element methods for acoustic and elastic wave propagation , 2007 .

[14]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[15]  Z. Pammer,et al.  The p–version of the finite–element method , 2014 .

[16]  Ashley F. Emery,et al.  Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements , 1997 .

[17]  Fu-Kuo Chang,et al.  Encyclopedia of structural health monitoring , 2009 .

[18]  M. Jensen,et al.  HIGH CONVERGENCE ORDER FINITE ELEMENTS WITH LUMPED MASS MATRIX , 1996 .

[19]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[20]  Daniel J. Inman,et al.  Damage Prognosis For Aerospace, Civil and Mechanical Systems Preface , 2005 .

[21]  Thomas Lenarz,et al.  Lecture Notes in Applied and Computational Mechanics Volume 74 , 2014 .

[22]  W. A. Mulder,et al.  Spurious modes in finite-element discretizations of the wave equation may not be all that bad , 1999 .

[23]  Christian Willberg Development of a new isogeometric finite element and its application forLamb wave based structural health monitoring , 2013 .

[24]  H. Lamb On waves in an elastic plate , 1917 .

[25]  Peter M. Pinsky,et al.  Finite element dispersion analysis for the three‐dimensional second‐order scalar wave equation , 1992 .

[26]  Ashley F. Emery,et al.  An evaluation of the cost effectiveness of Chebyshev spectral and p-finite element solutions to the scalar wave equation , 1999 .

[27]  Marek Krawczuk,et al.  Wave propagation modelling in 1D structures using spectral finite elements , 2007 .

[28]  Guang Meng,et al.  Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection , 2009 .

[29]  I. Babuska,et al.  Reliability Of Finite Element Methods For TheNumerical Computation Of Waves , 1970 .

[30]  Marek Krawczuk,et al.  Propagation of in-plane waves in an isotropic panel with a crack , 2006 .

[31]  J. Rose Ultrasonic Waves in Solid Media , 1999 .

[32]  Mark Ainsworth,et al.  Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..

[33]  W. Ostachowicz,et al.  Guided Waves in Structures for SHM: The Time - domain Spectral Element Method , 2012 .

[34]  T. Belytschko,et al.  A first course in finite elements , 2007 .

[35]  Bc Lee,et al.  Lamb wave propagation modelling for damage detection: I. Two-dimensional analysis , 2007 .

[36]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[37]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[38]  U. Gabbert,et al.  Comparison of different higher order finite element schemes for the simulation of Lamb waves , 2012 .

[39]  A. Leung,et al.  HEXAHEDRAL FOURIER p-ELEMENTS FOR VIBRATION OF PRISMATIC SOLIDS , 2004 .

[40]  T. Belytschko,et al.  Dispersion analysis of finite element semidiscretizations of the two‐dimensional wave equation , 1982 .

[41]  Mrinal K. Sen,et al.  Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations , 2007 .

[42]  Fu-Kuo Chang,et al.  Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates , 2009 .

[43]  P. Pinsky,et al.  Complex wavenumber Fourier analysis of the p-version finite element method , 1994 .

[44]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[45]  Mark Ainsworth,et al.  Dispersive and Dissipative Behavior of the Spectral Element Method , 2009, SIAM J. Numer. Anal..

[46]  Bc Lee,et al.  Lamb wave propagation modelling for damage detection: II. Damage monitoring strategy , 2007 .

[47]  D. L. Flaggs,et al.  A Fourier analysis of spurious mechanisms and locking in the finite element method , 1984 .

[48]  C. Pozrikidis,et al.  Introduction to finite and spectral element methods using MATLAB , 2014 .

[49]  S. P. Oliveira,et al.  Dispersion analysis of spectral element methods for elastic wave propagation , 2008 .

[50]  A. Fichtner Full Seismic Waveform Modelling and Inversion , 2011 .

[51]  M. Christon The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation , 1999 .

[52]  H. Yim,et al.  Numerical modeling and simulation for ultrasonic inspection of anisotropic austenitic welds using the mass-spring lattice model , 2011 .

[53]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[54]  Ulrich Gabbert,et al.  Anisotropic hierarchic finite elements for the simulation of piezoelectric smart structures , 2013 .

[55]  Ivo Babuška,et al.  Reliability of infinite element methods for the numerical computation of waves , 1997 .

[56]  O. C. Zienkiewicz,et al.  The Finite Element Method for Fluid Dynamics , 2005 .