Cesium Substitution Disrupts Concerted Cation Dynamics in Formamidinium Hybrid Perovskites

Although initial studies on hybrid perovskites for photovoltaic applications focused on simple compositions, the most technologically relevant perovskites are heavily substituted. The influence of ...

[1]  A. Kentgens,et al.  Solid-state NMR of hybrid halide perovskites. , 2019, Solid state nuclear magnetic resonance.

[2]  Craig M. Brown,et al.  Dynamical Phase Transitions and Cation Orientation-Dependent Photoconductivity in CH(NH2)2PbBr3 , 2019, ACS Materials Letters.

[3]  Jörg Meyer,et al.  The Relation between Rotational Dynamics of the Organic Cation and Phase Transitions in Hybrid Halide Perovskites , 2019, The journal of physical chemistry. C, Nanomaterials and interfaces.

[4]  Johan Hofkens,et al.  Tracking Structural Phase Transitions in Lead‐Halide Perovskites by Means of Thermal Expansion , 2019, Advanced materials.

[5]  Z. Tian,et al.  Toward Long-Term Stability: Single-Crystal Alloys of Cesium-Containing Mixed Cation and Mixed Halide Perovskite. , 2019, Journal of the American Chemical Society.

[6]  Thomas R. Hopper,et al.  Ultrafast Intraband Spectroscopy of Hot-Carrier Cooling in Lead-Halide Perovskites , 2018, ACS Energy Letters.

[7]  M. Islam,et al.  Mixed A-Cation Perovskites for Solar Cells: Atomic-Scale Insights Into Structural Distortion, Hydrogen Bonding, and Electronic Properties , 2018, Chemistry of Materials.

[8]  Tsutomu Miyasaka,et al.  Stability and Degradation in Hybrid Perovskites: Is the Glass Half-Empty or Half-Full? , 2018, The journal of physical chemistry letters.

[9]  C. Ratcliffe,et al.  Methylammonium Cation Dynamics in Methylammonium Lead Halide Perovskites: A Solid-State NMR Perspective. , 2018, The journal of physical chemistry. A.

[10]  M. Avdeev,et al.  Structural studies of the high temperature phases of AgTaO 3 , 2018 .

[11]  M. Kanatzidis,et al.  Crystal Structure Evolution and Notable Thermal Expansion in Hybrid Perovskites Formamidinium Tin Iodide and Formamidinium Lead Bromide. , 2018, Inorganic chemistry.

[12]  Philip Schulz,et al.  Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability , 2018 .

[13]  T. Kelly,et al.  Compositional Engineering To Improve the Stability of Lead Halide Perovskites: A Comparative Study of Cationic and Anionic Dopants , 2017 .

[14]  L. Daemen,et al.  Orientational Glass Formation in Substituted Hybrid Perovskites , 2017 .

[15]  M. Kanatzidis,et al.  Universal Dynamics of Molecular Reorientation in Hybrid Lead Iodide Perovskites. , 2017, Journal of the American Chemical Society.

[16]  H. Boyen,et al.  Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. , 2017, Journal of the American Chemical Society.

[17]  Xiaoyang Zhu,et al.  Large polarons in lead halide perovskites , 2017, Science Advances.

[18]  M. Grätzel,et al.  Cation Dynamics in Mixed-Cation (MA)x(FA)1-xPbI3 Hybrid Perovskites from Solid-State NMR. , 2017, Journal of the American Chemical Society.

[19]  Wei‐Liang Chen,et al.  Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites , 2017, Proceedings of the National Academy of Sciences.

[20]  R. Schurko,et al.  Practical considerations for the acquisition of ultra-wideline 14N NMR spectra. , 2017, Solid state nuclear magnetic resonance.

[21]  Emily A. Smith,et al.  Lead Halide Perovskites: Challenges and Opportunities in Advanced Synthesis and Spectroscopy , 2017 .

[22]  Zhuoying Chen,et al.  Organic Cation Rotation and Immobilization in Pure and Mixed Methylammonium Lead-Halide Perovskites. , 2017, Journal of the American Chemical Society.

[23]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[24]  Kent J. Griffith,et al.  Enhanced efficiency of solid-state NMR investigations of energy materials using an external automatic tuning/matching (eATM) robot. , 2017, Journal of magnetic resonance.

[25]  G. Bernard,et al.  Multinuclear Magnetic Resonance Tracking of Hydro, Thermal, and Hydrothermal Decomposition of CH3NH3PbI3 , 2017 .

[26]  M. Kanatzidis,et al.  Reentrant Structural and Optical Properties and Large Positive Thermal Expansion in Perovskite Formamidinium Lead Iodide. , 2016, Angewandte Chemie.

[27]  K. Page,et al.  Short-Range Order of Methylammonium and Persistence of Distortion at the Local Scale in MAPbBr3 Hybrid Perovskite. , 2016, Angewandte Chemie.

[28]  T. Ivanovska,et al.  Vibrational Response of Methylammonium Lead Iodide: From Cation Dynamics to Phonon-Phonon Interactions. , 2016, ChemSusChem.

[29]  M. Yoon,et al.  Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite , 2016, Science Advances.

[30]  Song Jin,et al.  Screening in crystalline liquids protects energetic carriers in hybrid perovskites , 2016, Science.

[31]  Radha Shivaramaiah,et al.  Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites , 2016, Proceedings of the National Academy of Sciences.

[32]  H. M. Jang,et al.  Resolving the Physical Origin of Octahedral Tilting in Halide Perovskites , 2016 .

[33]  Anton Van der Ven,et al.  Energy Landscape of Molecular Motion in Cubic Methylammonium Lead Iodide from First-Principles , 2016 .

[34]  Thibaud Etienne,et al.  Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells? , 2016, The journal of physical chemistry letters.

[35]  J. Chan,et al.  Orientation of Organic Cations in Hybrid Inorganic–Organic Perovskite CH3NH3PbI3 from Subatomic Resolution Single Crystal Neutron Diffraction Structural Studies , 2016 .

[36]  J. Rondinelli,et al.  Octahedral Rotation Preferences in Perovskite Iodides and Bromides. , 2016, The journal of physical chemistry letters.

[37]  M. Kanatzidis,et al.  Dielectric and Thermodynamic Signatures of Low-Temperature Glassy Dynamics in the Hybrid Perovskites CH3NH3PbI3 and HC(NH2)2PbI3. , 2016, The journal of physical chemistry letters.

[38]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[39]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[40]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[41]  David Cahen,et al.  How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. , 2015, The journal of physical chemistry letters.

[42]  Sabre Kais,et al.  Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3 , 2014, Nature Communications.

[43]  P. F. Peterson,et al.  Mantid - Data Analysis and Visualization Package for Neutron Scattering and $μ SR$ Experiments , 2014, 1407.5860.

[44]  D. Fredrickson DFT-chemical pressure analysis: visualizing the role of atomic size in shaping the structures of inorganic materials. , 2012, Journal of the American Chemical Society.

[45]  P. Heitjans,et al.  From micro to macro: access to long-range Li+ diffusion parameters in solids via microscopic (6, 7) Li spin-alignment echo NMR spectroscopy. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[46]  John R. D. Copley,et al.  DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data , 2009, Journal of research of the National Institute of Standards and Technology.

[47]  R. Tycko,et al.  Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder. , 2009, Journal of magnetic resonance.

[48]  Jun Wang,et al.  A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results. , 2008, The Review of scientific instruments.

[49]  P. Gehring,et al.  The high-flux backscattering spectrometer at the NIST Center for Neutron Research , 2002, cond-mat/0209153.

[50]  K. Knight,et al.  The structural phase transitions in strontium zirconate revisited , 2000 .

[51]  D. P. Burum,et al.  Temperature Dependence of 207 Pb MAS Spectra of Solid Lead Nitrate. An Accurate, Sensitive Thermometer for Variable-Temperature MAS , 1995 .

[52]  Ray Freeman,et al.  Adiabatic pulses for wideband inversion and broadband decoupling , 1995 .

[53]  Qiang Xu,et al.  Molecular Motions and Phase Transitions in Solid CH3NH3PbX3 (X = C1, Br, I) as Studied by NMR and NQR , 1991 .

[54]  Hiroshi Suga,et al.  Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II) , 1990 .

[55]  O. Knop,et al.  Cation rotation in methylammonium lead halides , 1985 .

[56]  Y. Venevtsev,et al.  Nuclear Quadrupole Resonance (NQR) of79Br and81Br in Perovskite and Orthorhombic Forms of CsPbBr3 and CsPbJ3 , 1969 .