Strain accumulation due to packages of cycles with varying amplitude and/or average stress – On the bundling of cycles and the loss of the cyclic preloading memory

Abstract In order to predict permanent deformations by means of a high-cycle accumulation (HCA) model, a random cyclic loading, i.e. a loading with frequently changing amplitudes, has to be grouped into packages of cycles each with a constant amplitude. Based on a series of drained triaxial tests on fine sand, in which the same cycles have been applied either in an order with frequently changing amplitudes or in packages of cycles, it is demonstrated that such bundling is conservative. Predictions by the HCA model of Niemunis et al. [19] are confronted with experimental data and with other approaches for the prediction of permanent deformations under packages of cycles, among them the frequently cited procedure of Stewart [26]. An effect not captured in the HCA model or in any other approach yet has been detected in another series of tests with a change of the average stress between bundles of cycles: The monotonic loading associated with this change can partially or fully erase the memory of the sand regarding its cyclic preloading history.

[1]  R. Brook,et al.  Cumulative Damage in Fatigue: A Step towards Its Understanding , 1969 .

[2]  Kenneth L. Lee,et al.  ANALYSIS OF THE SHEFFIELD DAM FAILURE , 1969 .

[3]  K L Lee,et al.  Equivalent Uniform Cycle Concept for Soil Dynamics , 1977 .

[4]  Susumu Yasuda,et al.  SAND LIQUEFACTION DUE TO IRREGULAR EXCITATION , 1972 .

[5]  WichtmannTorsten,et al.  On the “elastic stiffness” in a high-cycle accumulation model — continued investigations , 2013 .

[6]  Torsten Wichtmann,et al.  Strain accumulation in sand due to drained cyclic loading: On the effect of monotonic and cyclic preloading (Miner's rule) , 2010 .

[7]  Theodor Triantafyllidis,et al.  Gilt die Minersche Regel für Sand , 2006 .

[8]  T. Wichtmann,et al.  ON THE DEFINITION OF THE FATIGUE LOADING FOR SAND , 2006 .

[9]  F. Tatsuoka,et al.  Undrained Deformation and Liquefaction of Sand under Cyclic Stresses , 1975 .

[10]  Torsten Wichtmann,et al.  Simulation of a full-scale test on a gravity base foundation for offshore wind turbines using a high cycle accumulation model , 2015 .

[11]  H. Bolton Seed,et al.  Closure of "Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground during Earthquakes" , 1979 .

[12]  龍岡 文夫,et al.  Prediction of cyclic undrained strength of sand subjected to irregular loadings. , 1986 .

[13]  I. M. Idriss,et al.  SIMPLIFIED PROCEDURE FOR EVALUATING SOIL LIQUEFACTION POTENTIAL , 1971 .

[14]  Byron W. Byrne,et al.  Response of stiff piles to random two-way lateral loading , 2010 .

[15]  Torsten Wichtmann,et al.  On the "elastic" stiffness in a high-cycle accumulation model for sand: a comparison of drained and undrained cyclic triaxial tests. , 2010 .

[16]  Torsten Wichtmann,et al.  Strain accumulation in sand due to cyclic loading: drained triaxial tests , 2005 .

[17]  Kenji Ishihara,et al.  Effects of load irregularity on the cyclic behaviour of sand , 1987 .

[18]  Ta num,et al.  Ein Bemessungsmodell für Monopilegründungen unter zyklischen Horizontallasten , 2011 .

[19]  石原 研而,et al.  SAND LIQUEFACTION IN HOLLOW CYLINDER TORSION UNDER IRREGULAR EXCITATION , 1975 .

[20]  San-Shyan Lin,et al.  PERMANENT STRAINS OF PILES IN SAND DUE TO CYCLIC LATERAL LOADS. TECHNICAL NOTE , 1999 .

[21]  Susana López-Querol,et al.  Drained cyclic behaviour of loose Dogs Bay sand , 2012 .

[22]  H. E. Stewart Permanent Strains from Cyclic Variable‐Amplitude Loadings , 1986 .

[23]  Kenji Ishihara,et al.  Multi-directional irregular loading tests on sand* , 1988 .

[24]  Hans-Georg Kempfert,et al.  Jahresbericht 2014 des Arbeitskreises “Pfähle” der Deutschen Gesellschaft für Geotechnik (DGGT) , 2014 .

[25]  Byron W. Byrne,et al.  Response of stiff piles in sand to long-term cyclic lateral loading , 2010 .

[26]  Julio E. Valera,et al.  SOIL LIQUEFACTION PROCEDURES--A REVIEW , 1977 .

[27]  Torsten Wichtmann,et al.  Soil Structure Interaction of Foundations for Offshore Wind Turbines , 2016 .

[28]  C R Freeme,et al.  PERMANENT DEFORMATION CHARACTERISTICS OF SUBGRADE SOILS DUE TO REPEATED LOADING , 1975 .

[29]  Martin Achmus,et al.  Zur Bemessung von Monopiles für zyklische Lasten , 2008 .

[30]  Geert Degrande,et al.  Experimental study of strain accumulation of silica sand in a cyclic triaxial test , 2014 .

[31]  Torsten Wichtmann,et al.  A high-cycle accumulation model for sand , 2005 .

[32]  Torsten Wichtmann,et al.  Improved simplified calibration procedure for a high-cycle accumulation model , 2015 .

[33]  Torsten Wichtmann,et al.  Validation of a high cycle accumulation model via FE-simulations of a full-scale test on a gravity base foundation for offshore wind turbines , 2014 .

[34]  John P. Carter,et al.  Residual Strains in Calcareous Sand Due to Irregular Cyclic Loading , 1991 .

[35]  Torsten Wichtmann Prognose bleibender Verformungen infolge zyklischer Belastung mit veränderlicher Amplitude: Eine Diskussion unterschiedlicher Ansätze , 2011 .

[36]  Torsten Wichtmann,et al.  VALIDATION AND CALIBRATION OF A HIGH-CYCLE ACCUMULATION MODEL BASED ON CYCLIC TRIAXIAL TESTS ON EIGHT SANDS , 2009 .

[37]  Torsten Wichtmann,et al.  Explicit accumulation model for cyclic loading , 2003 .