Truncated Midzuno–Sen Sampling Schemes for Estimating Distribution Functions

We consider a truncated Midzuno–Sen sampling scheme. The proposed method can be used to estimate the distribution function of a study variable assuming that the distribution function of an auxiliary variable is known. The ratio estimator for estimating the distribution function is shown to remain unbiased. We introduce the first- and second-order inclusion probabilities under the truncated Midzuno–Sen sampling scheme. Numerical examples are provided to support our theoretical results.

[1]  Sarjinder Singh,et al.  Quantile estimation in two-phase sampling , 2007, Comput. Stat. Data Anal..

[2]  R. Chambers,et al.  Estimating distribution functions from survey data , 1986 .

[3]  Robert Chambers,et al.  Properties of estimators of the finite population distribution function , 1992 .

[4]  B. Prasad,et al.  Unbiased estimators of finite population variance using auxiliary information in sample surveys , 1992 .

[5]  Anwar H. Joarder,et al.  Median Estimation Using Double Sampling , 2001 .

[6]  D. Horvitz,et al.  A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .

[7]  Anthony Y. C. Kuk,et al.  Median Estimation in the Presence of Auxiliary Information , 1989 .

[8]  Hiroshi Midzuno,et al.  On the sampling system with probability proportionate to sum of sizes , 1951 .

[9]  R. Chambers,et al.  ESTIMATING DISTRIBUTION FUNCTIONS FROM SURVEY DATA WITH LIMITED BENCHMARK INFORMATION , 1989 .

[10]  Frank Yates,et al.  Selection Without Replacement from Within Strata with Probability Proportional to Size , 1953 .

[11]  Sampling schemes providing unbaised regression estimators , 1980 .

[12]  Alan H. Dorfman,et al.  Bias Robust Estimation in Finite Populations Using Nonparametric Calibration , 1993 .

[13]  Sarjinder Singh,et al.  An alternative estimator for multi-character surveys , 1998, Metrika.

[14]  Antonio Arcos,et al.  Optimum calibration points estimating distribution functions , 2010, J. Comput. Appl. Math..

[15]  Sarjinder Singh,et al.  Advanced Sampling Theory with Applications : How Michael ' selected' Amy Volume I , 2003 .

[16]  Classical and prediction approaches to estimating distribution functions from survey data , 1988 .

[17]  Antonio Arcos,et al.  Difference estimators of quantiles in finite populations , 2003 .

[18]  Sarjinder Singh Advanced Sampling Theory with Applications , 2003 .

[19]  Alan H. Dorfman Inference on Distribution Functions and Quantiles , 2009 .

[20]  C. T. Isaki,et al.  Variance Estimation Using Auxiliary Information , 1983 .

[21]  Alan H. Dorfman,et al.  A COMPARISON OF DESIGN-BASED AND MODEL-BASED ESTIMATORS OF THE FINITE POPULATION DISTRIBUTION FUNCTION , 1993 .

[22]  A. Kuk A kernel method for estimating finite population distribution functions using auxiliary information , 1993 .

[23]  J. Rao,et al.  On estimating distribution functions and quantiles from survey data using auxiliary information , 1990 .