Computing shortest homotopic cycles on polyhedral surfaces with hyperbolic uniformization metric

The problem of computing shortest homotopic cycles on a surface has various applications in computational geometry and graphics. In general, shortest homotopic cycles are not unique, and local shortening algorithms can become stuck in local minima. For surfaces with a negative Euler characteristic that can be given a hyperbolic uniformization metric, however, we show that they are unique and can be found by a simple locally shortening algorithm. We also demonstrate two applications: constructing extremal quasiconformal mappings between surfaces with the same topology, which minimize angular distortion, and detecting homotopy between two paths or cycles on a surface.

[1]  Tamal K. Dey,et al.  A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection , 1995, Discret. Comput. Geom..

[2]  Daniela Giorgi,et al.  Reeb graphs for shape analysis and applications , 2008, Theor. Comput. Sci..

[3]  Dezhong Chen,et al.  Curve Shortening Flow in a Riemannian Manifold , 2003, math/0312463.

[4]  P. Buser,et al.  Geometry and Spectra of Compact Riemann Surfaces , 1992 .

[5]  Hong Qin,et al.  Surface Mapping Using Consistent Pants Decomposition , 2009, IEEE Transactions on Visualization and Computer Graphics.

[6]  Sergio Cabello,et al.  Finding shortest non-trivial cycles in directed graphs on surfaces , 2010, J. Comput. Geom..

[7]  J. Hass,et al.  SHORTENING CURVES ON SURFACES , 1994 .

[8]  Jeff Erickson,et al.  Tightening non-simple paths and cycles on surfaces , 2006, SODA 2006.

[9]  Yunjin Lee,et al.  Geometric Snakes for Triangular Meshes , 2002, Comput. Graph. Forum.

[10]  George D. Birkhoff,et al.  Dynamical systems with two degrees of freedom , 1917 .

[11]  Alan F. Beardon,et al.  A primer on Riemann surfaces , 1984 .

[12]  Wei Zeng,et al.  Canonical homotopy class representative using hyperbolic structure , 2009, 2009 IEEE International Conference on Shape Modeling and Applications.

[13]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[14]  Erin W. Chambers,et al.  Splitting (complicated) surfaces is hard , 2008, Comput. Geom..

[15]  Chao Chen,et al.  Hardness Results for Homology Localization , 2010, SODA '10.

[16]  Martin Grohe The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2007, JACM.

[17]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[18]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[19]  John Hershberger,et al.  Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.

[20]  Frances Kirwan,et al.  An Introduction to Intersection Homology Theory, Second Edition , 2006 .

[21]  W. Floyd,et al.  HYPERBOLIC GEOMETRY , 1996 .

[22]  Shi-Qing Xin,et al.  Applying the improved Chen and Han's algorithm to different versions of shortest path problems on a polyhedral surface , 2010, Comput. Aided Des..

[23]  Martin Kutz,et al.  Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time , 2005, SCG '06.

[24]  Shing-Tung Yau,et al.  Computing shortest words via shortest loops on hyperbolic surfaces , 2011, Comput. Aided Des..

[25]  Xue-Cheng Tai,et al.  A Level Set Formulation of Geodesic Curvature Flow on Simplicial Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[26]  Chao Chen,et al.  Quantifying Homology Classes , 2008, STACS.

[27]  K. Mikula,et al.  Evolution of curves on a surface driven by the geodesic curvature and external force , 2006 .

[28]  Francis Lazarus,et al.  Optimal Pants Decompositions and Shortest Homotopic Cycles on an Orientable Surface , 2003, Graph Drawing.

[29]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[30]  Jeff Erickson,et al.  Computing the Shortest Essential Cycle , 2010, Discret. Comput. Geom..

[31]  Leif Kobbelt,et al.  Structure Preserving CAD Model Repair , 2005, Comput. Graph. Forum.

[32]  T. Dey,et al.  Theory of a Practical Delaunay Meshing Algorithm for a Large Class of Domains , 2009 .

[33]  Oswald Teichmüller,et al.  Extremale quasikonforme Abbildungen und quadratische Differentiale , 1940 .

[34]  Joseph E. Borzellino,et al.  THE CLOSED GEODESIC PROBLEM FOR COMPACT RIEMANNIAN 2-ORBIFOLDS , 1996 .

[35]  Tamal K. Dey,et al.  Transforming Curves on Surfaces , 1999, J. Comput. Syst. Sci..

[36]  Haijo Schipper,et al.  Determining contractibility of curves , 1992, SCG '92.

[37]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[38]  Francis Lazarus,et al.  Optimal System of Loops on an Orientable Surface , 2005, Discret. Comput. Geom..

[39]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[40]  Xianfeng Gu,et al.  Computing shortest cycles using universal covering space , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[41]  David Cohen-Steiner,et al.  Computing geometry-aware handle and tunnel loops in 3D models , 2008, ACM Trans. Graph..

[42]  A. Pressley Elementary Differential Geometry , 2000 .

[43]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[44]  M. Gage,et al.  Curve shortening on surfaces , 1990 .

[45]  M. Grayson Shortening embedded curves , 1989 .

[46]  Martin Isenburg,et al.  Centroidal Voronoi diagrams for isotropic surface remeshing , 2005, Graph. Model..

[47]  Shi-Min Hu,et al.  Topology Repair of Solid Models Using Skeletons , 2007, IEEE Transactions on Visualization and Computer Graphics.

[48]  Oswald Teichmüller,et al.  Bestimmung der extremalen quasikonformen Abbildungen bei geschlossenen orientierten Riemannschen Flächen , 1943 .

[49]  Amir Nayyeri,et al.  Minimum cuts and shortest non-separating cycles via homology covers , 2011, SODA '11.

[50]  Éric Colin de Verdière Shortest Cut Graph of a Surface with Prescribed Vertex Set , 2010, ESA.

[51]  Frances Kirwan,et al.  An introduction to intersection homology theory. , 1988 .