Some Properties of the Value Function and Its Level Sets for Affine Control Systems with Quadratic Cost

AbstractLet $$T >0$$ be fixed. We consider the optimal control problem for analytic affine systems: $$\dot x = f_0 (x) + \sum\limits_{i = 1}^m {u_i f_i (x)} $$ , with a cost of the form: $$C(u) = \int\limits_0^T {\;\sum\limits_{i = 1}^m {\;u_i^2 (t)\;dt} } $$ . For this kind of systems we prove that if there are no minimizing abnormal extremals then the value function S is subanalytic. Second, we prove that if there exists an abnormal minimizer of corank 1, then the set of endpoints of minimizers at cost fixed is tangent to a given hyperplane. We illustrate this situation in sub-Riemannian geometry.

[1]  A. F. Filippov On Certain Questions in the Theory of Optimal Control , 1962 .

[2]  A. Krener The High Order Maximal Principle and Its Application to Singular Extremals , 1977 .

[3]  Wensheng Liu,et al.  Shortest paths for sub-Riemannian metrics on rank-two distributions , 1996 .

[4]  H. Hironaka Algebraic geometry and commuta-tive algebra , 1973 .

[5]  Héctor J. Sussmann,et al.  Some Examples of Reachable Sets and Optimal Cost Functions That Fail to be Subanalytic , 1985 .

[6]  A. M. Gabri lov Projections of semi-analytic sets , 1969 .

[7]  S. Jacquet Subanalyticity of the Sub-Riemannian Distance , 1999 .

[8]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[9]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[10]  Andrei A. Agrachev,et al.  Strong minimality of abnormal geodesics for 2-distributions , 1995 .

[11]  Bernard Bonnard,et al.  Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal , 1993 .

[12]  Martin Tamm,et al.  Subanalytic sets in the calculus of variation , 1981 .

[13]  The Transcendence Needed to Compute the Sphere and the Wave Front in Martinet SR-Geometry , 2001 .

[14]  P. Brunovský Existence of regular synthesis for general control problems , 1980 .

[15]  R. Hardt Stratification of real analytic mappings and images , 1975 .

[16]  Sub-Riemannian Metrics: Minimality of Abnormal Geodesics versus Subanalyticity , 1999 .

[17]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[18]  A. Agrachev,et al.  A. Agrachev COMPACTNESS FOR SUB-RIEMANNIAN LENGTH-MINIMIZERS AND SUBANALYTICITY , 1999 .

[19]  Andrei A. Agrachev,et al.  Sub-riemannian sphere in Martinet flat case , 1997 .

[20]  Héctor J. Sussmann,et al.  Regular synthesis for time-optimal control of single-input real analytic systems in the plane , 1987 .

[21]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .