Locality and Availability of Array Codes Constructed From Subspaces

We study array codes which are based on subspaces of a linear space over a finite field, using spreads, <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-Steiner systems, and subspace transversal designs. We present several constructions of such codes which are <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-analogs of some known block codes, such as the Hamming and simplex codes. We examine the locality and availability of the constructed codes. In particular, we distinguish between two types of locality and availability: node versus symbol. The resulting codes have distinct symbol/node locality/availability, allowing a more efficient repair process for a single symbol stored in a storage node of a distributed storage system, compared with the repair process for the whole node.

[1]  Hsuan-Yin Lin,et al.  Lengthening and Extending Binary Private Information Retrieval Codes , 2017, ArXiv.

[2]  Paul H. Siegel,et al.  Linear locally repairable codes with availability , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[3]  Frédérique E. Oggier,et al.  Locally repairable codes with multiple repair alternatives , 2013, 2013 IEEE International Symposium on Information Theory.

[4]  Tuvi Etzion,et al.  Distributed storage systems based on intersecting subspace codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[5]  Ernst M. Gabidulin,et al.  Multicomponent Network Coding , 2011 .

[6]  Moshe Schwartz,et al.  Codes and Anticodes in the Grassman Graph , 2002, J. Comb. Theory, Ser. A.

[7]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[8]  Yunnan Wu,et al.  A Survey on Network Codes for Distributed Storage , 2010, Proceedings of the IEEE.

[9]  Kannan Ramchandran,et al.  Fractional repetition codes for repair in distributed storage systems , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[10]  Natalia Silberstein,et al.  Optimal Fractional Repetition Codes Based on Graphs and Designs , 2014, IEEE Transactions on Information Theory.

[11]  Bianca Schroeder,et al.  Understanding latent sector errors and how to protect against them , 2010, TOS.

[12]  Natalia Silberstein,et al.  Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.

[13]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[14]  Natalia Silberstein,et al.  Codes and designs related to lifted MRD codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[15]  Sriram Vishwanath,et al.  Explicit MBR all-symbol locality codes , 2013, 2013 IEEE International Symposium on Information Theory.

[16]  Cheng Huang,et al.  On the Locality of Codeword Symbols , 2011, IEEE Transactions on Information Theory.

[17]  Eitan Yaakobi,et al.  Bounds and constructions of codes with multiple localities , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[18]  John T. Gill,et al.  Scalable constructions of fractional repetition codes in distributed storage systems , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[19]  Alexander Vardy,et al.  Lower Bound on the Redundancy of PIR Codes , 2016, ArXiv.

[20]  A. Robert Calderbank,et al.  Binary cyclic codes that are locally repairable , 2014, 2014 IEEE International Symposium on Information Theory.

[21]  Eitan Yaakobi,et al.  Optimal linear and cyclic locally repairable codes over small fields , 2015, 2015 IEEE Information Theory Workshop (ITW).

[22]  Kenneth W. Shum,et al.  General Fractional Repetition Codes for Distributed Storage Systems , 2014, IEEE Communications Letters.

[23]  Sriram Vishwanath,et al.  Cooperative local repair in distributed storage , 2014, 2014 48th Annual Conference on Information Sciences and Systems (CISS).

[24]  Alexandros G. Dimakis,et al.  Batch codes through dense graphs without short cycles , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[25]  Swanand Kadhe,et al.  Codes with unequal locality , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[26]  Jehoshua Bruck,et al.  Zigzag Codes: MDS Array Codes With Optimal Rebuilding , 2011, IEEE Transactions on Information Theory.

[27]  Henk D. L. Hollmann Storage codes — Coding rate and repair locality , 2013, 2013 International Conference on Computing, Networking and Communications (ICNC).

[28]  P. Vijay Kumar,et al.  Codes with hierarchical locality , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[29]  Eitan Yaakobi,et al.  Codes for distributed PIR with low storage overhead , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[30]  Tuvi Etzion,et al.  PIR array codes with optimal PIR rates , 2016, 2017 IEEE International Symposium on Information Theory (ISIT).

[31]  Frédérique E. Oggier,et al.  An overview of codes tailor-made for better repairability in networked distributed storage systems , 2013, SIGA.

[32]  Stefan Savage,et al.  Total Recall: System Support for Automated Availability Management , 2004, NSDI.

[33]  Arya Mazumdar,et al.  Bounds on the Size of Locally Recoverable Codes , 2015, IEEE Transactions on Information Theory.

[34]  Venkatesan Guruswami,et al.  Locality via Partially Lifted Codes , 2017, APPROX-RANDOM.

[35]  Se June Hong,et al.  A General Class of Maximal Codes ror Computer Applications , 1972, IEEE Transactions on Computers.

[36]  R. Curtis A course in combinatorics (2nd edn), by J. H. van Lint and R. M. Wilson. Pp. 602. £24.95. 2001. ISBN 0 521 00601 5 (Cambridge University Press). , 2003, The Mathematical Gazette.

[37]  Dimitris S. Papailiopoulos,et al.  Locality and Availability in Distributed Storage , 2014, IEEE Transactions on Information Theory.

[38]  Natalia Silberstein,et al.  Optimal binary locally repairable codes via anticodes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[39]  Vinayak Ramkumar,et al.  Binary, shortened projective reed muller codes for coded private information retrieva , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[40]  P. Vijay Kumar,et al.  Codes With Local Regeneration and Erasure Correction , 2014, IEEE Transactions on Information Theory.

[41]  Ben Y. Zhao,et al.  Pond: The OceanStore Prototype , 2003, FAST.

[42]  Alexandros G. Dimakis,et al.  Network Coding for Distributed Storage Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[43]  Rafail Ostrovsky,et al.  Batch codes and their applications , 2004, STOC '04.

[44]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[45]  Frédérique Oggier,et al.  Self-repairing homomorphic codes for distributed storage systems , 2010, 2011 Proceedings IEEE INFOCOM.

[46]  Tuvi Etzion Perfect Byte-Correcting Codes , 1998, IEEE Trans. Inf. Theory.

[47]  Kannan Ramchandran,et al.  One extra bit of download ensures perfectly private information retrieval , 2014, 2014 IEEE International Symposium on Information Theory.

[48]  Anyu Wang,et al.  Achieving arbitrary locality and availability in binary codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[49]  Xin Wang,et al.  On Private Information Retrieval Array Codes , 2016, IEEE Transactions on Information Theory.

[50]  Eitan Yaakobi,et al.  Nearly optimal constructions of PIR and batch codes , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[51]  Cheng Huang,et al.  Erasure Coding in Windows Azure Storage , 2012, USENIX Annual Technical Conference.

[52]  P. Östergård,et al.  EXISTENCE OF $q$ -ANALOGS OF STEINER SYSTEMS , 2013, Forum of Mathematics, Pi.

[53]  Sriram Vishwanath,et al.  Optimal Locally Repairable and Secure Codes for Distributed Storage Systems , 2012, IEEE Transactions on Information Theory.

[54]  GhemawatSanjay,et al.  The Google file system , 2003 .