Evolutionary Computation: from Genetic Algorithms to Genetic Programming

This chapter presented the biological motivation and fundamental aspects of evolutionary algorithms and its constituents, namely genetic algorithm, evolution strategies, evolutionary programming and genetic programming. Most popular variants of genetic programming are introduced. Important advantages of evolutionary computation while compared to classical optimization techniques are also discussed.

[1]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[2]  Michael O'Neill,et al.  Grammatical Evolution: Evolving Programs for an Arbitrary Language , 1998, EuroGP.

[3]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[4]  Mike Livesey,et al.  Distinguishing genotype and phenotype in genetic programming , 1996 .

[5]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[6]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[7]  John McCarthy,et al.  History of LISP , 1978, SIGP.

[8]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[9]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[10]  Cândida Ferreira,et al.  Gene Expression Programming: A New Adaptive Algorithm for Solving Problems , 2001, Complex Syst..

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[13]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[14]  Julian Francis Miller,et al.  Cartesian genetic programming , 2000, GECCO '10.

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[17]  Mihai Oltean,et al.  Evolving Evolutionary Algorithms Using Multi Expression Programming , 2003, ECAL.

[18]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[19]  Mihai Oltean,et al.  Solving even-parity problems using traceless genetic programming , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).