Critical Edge Behavior in Unitary Random Matrix Ensembles and the Thirty-Fourth Painlevé Transcendent

We describe a new universality class for unitary invariant random matrix ensembles. It arises in the double scaling limit of ensembles Z(n,N)(-1)vertical bar det M vertical bar (2 alpha)e(-NTrV(M)) dM, with alpha > -1/2, defined on n x n Hermitian matrices M. Assuming that the limiting mean eigenvalue density is regular and that the origin is a right endpoint of its support, we compute the limiting eigenvalue correlation kernel in the double scaling limit as n, N -> infinity such that n(2/3)(n/N-1) = O(1). We use the Deift-Zhou steepest descent method for the Riemann-Hilbert problem for polynomials orthogonal with respect to the weight vertical bar x vertical bar(2 alpha)e(-NV(x)). Our main attention is on the construction of a local parametrix near the origin by means of the psi-functions associated with a distinguished solution of the Painleve XXXIV equation.

[1]  T. Claeys,et al.  Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models , 2006, math-ph/0607043.

[2]  Athanassios S. Fokas,et al.  Painleve Transcendents: The Riemann-hilbert Approach , 2006 .

[3]  Maurice Duits,et al.  Painlevé I asymptotics for orthogonal polynomials with respect to a varying quartic weight , 2006, math/0605201.

[4]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[5]  A. Kuijlaars,et al.  Multi-critical unitary random matrix ensembles and the general Painlevé II equation , 2005, math-ph/0508062.

[6]  P. Deift,et al.  Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices , 2005, math-ph/0507023.

[7]  Tom Claeys,et al.  Universality of the double scaling limit in random matrix models , 2005 .

[8]  A. Kapaev Quasi-linear Stokes phenomenon for the Hastings-McLeod solution of the second Painlevé equation , 2004, nlin/0411009.

[9]  A. S. Fokas,et al.  The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .

[10]  A. Kuijlaars,et al.  Universality for Eigenvalue Correlations at the Origin of the Spectrum , 2003, math-ph/0305044.

[11]  P. Deift,et al.  A priori $L^p$ estimates for solutions of Riemann-Hilbert Problems , 2002, math/0206224.

[12]  LONG–TIME EQUATION WITH INITIAL DATA IN A WEIGHTED SOBOLEV SPACE , 2022 .

[13]  Alexander Its,et al.  Isomonodromic Deformations and Applications in Physics , 2002 .

[14]  Pavel Bleher,et al.  Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.

[15]  J. Harnad,et al.  Integrable Fredholm Operators and Dual Isomonodromic Deformations , 1997, solv-int/9706002.

[16]  P. Deift,et al.  Perturbation theory for infinite-dimensional integrable systems on the line. A case study , 2002 .

[17]  P. Deift,et al.  Fredholm determinants, Jimbo‐Miwa‐Ueno τ‐functions, and representation theory , 2001, math-ph/0111007.

[18]  Peter D. Miller,et al.  Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation , 2000, nlin/0012034.

[19]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[20]  Arno B. J. Kuijlaars,et al.  Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields , 2000 .

[21]  C. Howls,et al.  Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear , 2000 .

[22]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[23]  E. Hubert,et al.  A note on the Lax pairs for Painlevéequations , 1999 .

[24]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[25]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[26]  C. Tracy,et al.  Airy Kernel and Painleve II , 1999, solv-int/9901004.

[27]  Percy Deift,et al.  New Results on the Equilibrium Measure for Logarithmic Potentials in the Presence of an External Field , 1998 .

[28]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[29]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[30]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9210074.

[31]  Athanassios S. Fokas,et al.  On the solvability of Painlevé II and IV , 1992 .

[32]  A. Kapaev Global asymptotics of the second Painlevé transcendent , 1992 .

[33]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[34]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[35]  G. Moore Matrix Models of 2D Gravity and Isomonodromic Deformation , 2013 .

[36]  M. Bowick,et al.  Universal scaling of the tail of the density of eigenvalues in random matrix models , 1991 .

[37]  Xin Zhou The Riemann-Hilbert problem and inverse scattering , 1989 .

[38]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[39]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .

[40]  S. P. Hastings,et al.  A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation , 1980 .

[41]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[42]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[43]  F. Dyson Correlations between eigenvalues of a random matrix , 1970 .

[44]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[45]  F. Carlson,et al.  Sur une classe de séries de Taylor , 1914 .