Computational nanotechnology with carbon nanotubes and fullerenes

The authors envision computational nanotechnology's role in developing the next generation of multifunctional materials and molecular-scale electronic and computing devices, sensors, actuators, and machines. They briefly review computational techniques and provide a few recent examples derived from computer simulations of carbon nanotube-based molecular nanotechnology. The four core areas are: molecular-scale, ultralightweight, extremely strong, functional or smart materials; molecular-scale or nanoscale electronics with possibilities for quantum computing; molecular-scale sensors or actuators; and molecular machines or motors with synthetic materials. The underlying molecular-scale building blocks in all four areas are fullerenes and carbon nanotube-based molecular materials. Only the different aspects of their physical, chemical, mechanical, and electronic properties create the many applications possible with these materials in vastly different areas.

[1]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[2]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[3]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[4]  A. N. Andriotis,et al.  Catalytic action of Ni atoms in the formation of carbon nanotubes: a molecular dynamics study. , 2000, Physical review letters.

[5]  H. Wagner,et al.  Buckling and Collapse of Embedded Carbon Nanotubes , 1998 .

[6]  Alois Weidinger,et al.  Electron paramagnetic resonance study of atomic phosphorus encapsulated in [60]fullerene , 1998 .

[7]  C. N. R. Rao,et al.  Y-junction carbon nanotubes , 2000 .

[8]  S.T. Barnard,et al.  Molecular Dynamics Simulation of Large-Scale Carbon Nanotubes on a Shared-Memory Architecture , 1997, ACM/IEEE SC 1997 Conference (SC'97).

[9]  Madhu Menon,et al.  Structure of boron nitride nanotubes: tube closing versus chirality , 1999 .

[10]  Madhu Menon,et al.  NANOPLASTICITY OF SINGLE-WALL CARBON NANOTUBES UNDER UNIAXIAL COMPRESSION , 1999 .

[11]  Samuel K. Moore Silicon IC models brain activity , 2000 .

[12]  A. Kulik,et al.  Mechanical properties of carbon nanotubes , 1999 .

[13]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[14]  Madhu Menon,et al.  Carbon Nanotube ``T Junctions'': Nanoscale Metal-Semiconductor-Metal Contact Devices , 1997 .

[15]  Xu,et al.  Electronic transport in Y-junction carbon nanotubes , 2000, Physical review letters.

[16]  Cohen,et al.  Electronic properties of oxidized carbon nanotubes , 2000, Physical review letters.

[17]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[18]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[19]  P. Avouris,et al.  Nanotubes for electronics. , 2000, Scientific American.

[20]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[21]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[22]  Madhu Menon,et al.  Carbon Nanotube Based Molecular Electronic Devices , 1998 .

[23]  Walter A. Harrison,et al.  Electronic structure and the properties of solids , 1980 .

[24]  P. Avouris,et al.  Mechanical Properties of Carbon Nanotubes , 2001 .

[25]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[26]  J. Tersoff,et al.  Empirical interatomic potential for silicon with improved elastic properties. , 1988, Physical review. B, Condensed matter.

[27]  Madhu Menon,et al.  Anisotropic Nanomechanics of Boron Nitride Nanotubes: Nanostructured "Skin" Effect , 2001 .

[28]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[29]  Carlo D. Montemagno,et al.  Constructing nanomechanical devices powered by biomolecular motors , 1999 .

[30]  P. Ajayan,et al.  Carbon onions as nanoscopic pressure cells for diamond formation , 1996, Nature.

[31]  A. Globus,et al.  Molecular dynamics simulations of carbon nanotube-based gears , 1997 .

[32]  Madhu Menon,et al.  Nonorthogonal tight-binding molecular-dynamics scheme for silicon with improved transferability , 1997 .

[33]  Kyeongjae Cho,et al.  Chemical control of nanotube electronics , 2000 .

[34]  Madhu Menon,et al.  Ballistic switching and rectification in single wall carbon nanotube Y junctions , 2001 .

[35]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[36]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[37]  D. Srivastava,et al.  endo-Fullerene and doped diamond nanocrystallite-based models of qubits for solid-state quantum computers. , 2013, Journal of nanoscience and nanotechnology.

[38]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[39]  Lang,et al.  Carbon-atom wires: charge-transfer doping, voltage drop, and the effect of distortions , 2000, Physical review letters.

[40]  D. Srivastava,et al.  Rectification properties of carbon nanotube "Y-junctions". , 2001, Physical review letters.

[41]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[42]  D. Srivastava A phenomenological model of the rotation dynamics of carbon nanotube gears with laser electric fields , 1997 .

[43]  D. Srivastava,et al.  Potential energy surfaces for chemical reactions at solid surfaces. , 1995, Annual review of physical chemistry.

[44]  Dmitri Golberg,et al.  Insights into the structure of BN nanotubes , 2000 .

[45]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[46]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.