On a new q-ary combinatorial analog of the binary Grey-Rankin bound and codes meeting this bound
暂无分享,去创建一个
Tor Helleseth | Victor Zinoviev | Stefan M. Dodunekov | Leonid A. Bassalygo | T. Helleseth | V. Zinoviev | S. Dodunekov | L. Bassalygo
[1] S. S. Shrikhande,et al. Generalized Hadamard Matrices and Orthogonal Arrays of Strength Two , 1964, Canadian Journal of Mathematics.
[2] Gary McGuire,et al. Quasi-Symmetric Designs and Codes Meeting the Grey-Rankin Bound , 1997, J. Comb. Theory A.
[3] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[4] R. A. Rankin,et al. On the minimal points of positive definite quadratic forms , 1956 .
[5] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[6] L. D. Grey. Some bounds for error-correcting codes , 1962, IRE Trans. Inf. Theory.
[7] Hanfried Lenz,et al. Design theory , 1985 .
[8] Torleiv Kløve,et al. On the Hamming Distance Between Two i.i.d. Random n-Tuples over a Finite Set , 1999, IEEE Trans. Inf. Theory.
[9] Tor Helleseth,et al. On q-ary Grey-Rankin bound and codes meeting this bound , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[10] Tor Helleseth,et al. A bound for codes with given minimum and maximum distances , 2006, 2006 IEEE International Symposium on Information Theory.
[11] R. C. Bose,et al. Orthogonal Arrays of Strength two and three , 1952 .