Fractal and Transfractal Scale-Free Networks

Self-similarity is a property of fractal structures, a concept introduced by Mandelbrot and one of the fundamental mathematical results of the 20th century. The importance of fractal geometry stems from the fact that these structures were recognized in numerous examples in Nature, from the coexistence of liquid/gas at the critical point of evaporation of water, to snowflakes, to the tortuous coastline of the Norwegian fjords, to the behavior of many complex systems such as economic data, or the complex patterns of human agglomeration. Here we review the recent advances in self-similarity of complex networks and its relation to transport, diffusion, percolations and other topological properties such us degree distribution, modularity, and degree-degree correlations.

[1]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[2]  Manfred Salmhofer,et al.  Renormalization: An Introduction , 2007 .

[3]  Erik M Bollt,et al.  Local method for detecting communities. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  A. Fisher,et al.  The Theory of Critical Phenomena: An Introduction to the Renormalization Group , 1992 .

[5]  Hernán D Rozenfeld,et al.  Percolation in hierarchical scale-free nets. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[7]  Ioannis Xenarios,et al.  DIP: the Database of Interacting Proteins , 2000, Nucleic Acids Res..

[8]  Shlomo Havlin,et al.  Fractal and transfractal recursive scale-free nets , 2007 .

[9]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[10]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[11]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[12]  L. Trajkovic,et al.  Mapping the Internet , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[13]  Béla Bollobás,et al.  Random Graphs , 1985 .

[14]  J S Kim,et al.  A box-covering algorithm for fractal scaling in scale-free networks. , 2007, Chaos.

[15]  James P. Bagrow Evaluating local community methods in networks , 2007, 0706.3880.

[16]  Sergey N. Dorogovtsev,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW (Physics) , 2003 .

[17]  B. Bollobás The evolution of random graphs , 1984 .

[18]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[19]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[20]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[21]  Robert B. Griffiths,et al.  Exactly soluble Ising models on hierarchical lattices , 1981 .

[22]  Declan Butler Amazon puts network power online , 2006, Nature.

[23]  Shlomo Havlin,et al.  Origins of fractality in the growth of complex networks , 2005, cond-mat/0507216.

[24]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[25]  J. Rogers Chaos , 1876 .

[26]  Paul C. Martin Statistical Physics: Statics, Dynamics and Renormalization , 2000 .

[27]  S. N. Dorogovtsev,et al.  Pseudofractal scale-free web. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Marián Boguñá,et al.  Clustering in complex networks. II. Percolation properties. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[30]  Robert B. Griffiths,et al.  Spin systems on hierarchical lattices. II. Some examples of soluble models , 1984 .

[31]  Michael Hinczewski,et al.  Inverted Berezinskii-Kosterlitz-Thouless singularity and high-temperature algebraic order in an Ising model on a scale-free hierarchical-lattice small-world network. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  K. Andres,et al.  Low-temperature magnetic susceptibility of Si: P in the nonmetallic region , 1981 .

[33]  K-I Goh,et al.  Skeleton and fractal scaling in complex networks. , 2006, Physical review letters.

[34]  S. Ostlund,et al.  Renormalisation-group calculations of finite systems: order parameter and specific heat for epitaxial ordering , 1979 .

[35]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[36]  S. Havlin,et al.  How to calculate the fractal dimension of a complex network: the box covering algorithm , 2007, cond-mat/0701216.

[37]  S. Havlin,et al.  Scaling theory of transport in complex biological networks , 2007, Proceedings of the National Academy of Sciences.

[39]  K. Goh,et al.  Fractality and self-similarity in scale-free networks , 2007 .

[40]  Natalia Maltsev,et al.  WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction , 2000, Nucleic Acids Res..

[41]  E. M. Bollt,et al.  Portraits of complex networks , 2008 .

[42]  R. Linsker,et al.  Improving network robustness by edge modification , 2005 .

[43]  Erik M. Bollt,et al.  What is Special about Diffusion on Scale-Free Nets? , 2004 .

[44]  Reuven Cohen,et al.  Percolation critical exponents in scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[46]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[47]  R Pastor-Satorras,et al.  Dynamical and correlation properties of the internet. , 2001, Physical review letters.

[48]  D. Thouless Introduction to Phase Transitions and Critical Phenomena , 1972 .

[49]  A. Barabasi,et al.  Quantifying social group evolution , 2007, Nature.

[50]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[51]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[52]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[53]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[55]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[56]  W. Coffey,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2002 .

[57]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[58]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[60]  T. Vicsek Fractal Growth Phenomena , 1989 .

[61]  Alessandro Vespignani,et al.  Evolution and structure of the Internet , 2004 .

[62]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2000 .

[63]  D. Sornette,et al.  Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling , 2006, cond-mat/0605676.

[64]  Albert-László Barabási,et al.  Linked - how everything is connected to everything else and what it means for business, science, and everyday life , 2003 .

[65]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Stefan Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[67]  A. Barabasi,et al.  Percolation in directed scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[69]  Reuven Cohen,et al.  Stability and topology of scale-free networks under attack and defense strategies. , 2005, Physical review letters.

[70]  Julio M. Ottino,et al.  Complex networks , 2004, Encyclopedia of Big Data.

[71]  M. Serrano,et al.  Percolation and epidemic thresholds in clustered networks. , 2006, Physical review letters.

[72]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[73]  Hernán A Makse,et al.  Scaling of degree correlations and its influence on diffusion in scale-free networks. , 2008, Physical review letters.

[74]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[75]  Reuven Cohen,et al.  Tolerance of scale-free networks: from friendly to intentional attack strategies , 2004 .

[76]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[77]  Partha Dasgupta,et al.  Topology of the conceptual network of language. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  J S Kim,et al.  Fractality in complex networks: critical and supercritical skeletons. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.