Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture

We study absorption enhancement by light scattering at periodically textured interfaces in thin film silicon solar cells. We show that the periodicity establishes resonant coupling to propagating waveguide modes. Ideally, such modes propagate in the high index silicon film where they are eventually absorbed, but waveguide modes exist also in the transparent front contact layer if the product of its refractive index and thickness exceeds half the wavelength. Taking into account that the absorption coefficient of realistic transparent conducing films exceeds the one of silicon close to its band gap, certain waveguide modes will enhance parasitic absorption in the transparent front contact. From an analysis based on the statistic distribution of energy among the available waveguide and radiation modes, we conclude that conventional thin film silicon solar cells with thick and nonideal contacts may fail to reach the previously noted bulk limit of 4nSi2; instead, a more conservative limit of 4(nSi2-nTCO2) applies.

[1]  H. Herzig,et al.  Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings. , 2011, Optics express.

[2]  F. Lederer,et al.  Comparison and optimization of randomly textured surfaces in thin-film solar cells. , 2010, Optics express.

[3]  S. Fan,et al.  Fundamental limit of light trapping in grating structures. , 2010, Optics express.

[4]  Christophe Ballif,et al.  Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler , 2010 .

[5]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[6]  Aad Gordijn,et al.  High potential of thin (<1 µm) a‐Si: H/µc‐Si:H tandem solar cells , 2010 .

[7]  C. Ballif,et al.  Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers , 2009 .

[8]  C. Ballif,et al.  Plasmonic absorption in textured silver back reflectors of thin film solar cells , 2008 .

[9]  D. A. Clugston,et al.  Crystalline silicon on glass (CSG) thin-film solar cell modules , 2004 .

[10]  Bernd Rech,et al.  Intrinsic microcrystalline silicon: A new material for photovoltaics , 2000 .

[11]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[12]  Diego Fischer,et al.  Microcrystalline silicon and micromorph tandem solar cells , 1999 .

[13]  R. Morf,et al.  Submicrometer gratings for solar energy applications. , 1995, Applied optics.

[14]  W. Karthe,et al.  Energy loss in a planar waveguide caused by a high refracting and absorbing overlay , 1993 .

[15]  Hiroshi Sakai,et al.  Effects of Surface Morphology of Transparent Electrode on the Open-Circuit Voltage in a-Si:H Solar Cells , 1990 .

[16]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[17]  Ping Sheng,et al.  Wavelength-selective absorption enhancement in thin-film solar cells , 1983 .

[18]  Eli Yablonovitch,et al.  Optically enhanced amorphous silicon solar cells , 1983 .

[19]  S. Shakir,et al.  Method of poles for multilayer thin-film waveguides , 1982 .

[20]  H. Raether,et al.  Dispersion relation of surface plasmons on gold- and silver gratings , 1982 .

[21]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[22]  H. Okamoto,et al.  Glow discharge produced amorphous silicon solar cells , 1979 .

[23]  W. Burns,et al.  End fire coupling between optical fibers and diffused channel waveguides. , 1977, Applied optics.

[24]  I. Pockrand,et al.  Surface plasma oscillations in silver films with navy surface profiles: A quantitative experimental study , 1976 .

[25]  D. Carlson,et al.  AMORPHOUS SILICON SOLAR CELL , 1976 .

[26]  D. Redfield,et al.  Multiple‐pass thin‐film silicon solar cell , 1974 .

[27]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[28]  R. J. Martin,et al.  MODES OF PROPAGATING LIGHT WAVES IN THIN DEPOSITED SEMICONDUCTOR FILMS , 1969 .

[29]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .