Quantitative kink boundaries strengthening effect of Mg-Y-Zn alloy containing LPSO phase

[1]  Yuan Yao,et al.  Improved workability for Mg-Y-Zn alloys via increased volume fraction of block LPSO phases , 2020 .

[2]  Y. Kawamura,et al.  Hot compression deformation behavior of Mg–Y–Zn alloys containing LPSO phase , 2020 .

[3]  D. Ando,et al.  Microstructure and mechanical properties of caliber rolled Mg–Y–Zn alloys , 2020 .

[4]  K. Hagihara,et al.  Strengthening of Mg-based long-period stacking ordered (LPSO) phase with deformation kink bands , 2019, Materials Science and Engineering: A.

[5]  K. Hagihara,et al.  Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys , 2019, Acta Materialia.

[6]  Hua-nan Liu,et al.  Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg–Y–Zn alloys during annealing at 773 K , 2016 .

[7]  F. Dobeš,et al.  High-Temperature Mechanical Behavior of Extruded Mg-Y-Zn Alloy Containing LPSO Phases , 2013, Metallurgical and Materials Transactions A.

[8]  F. Pan,et al.  Influence of the morphology of long-period stacking ordered phase on the mechanical properties of as-extruded Mg–5Zn–5Y–0.6Zr magnesium alloy , 2012 .

[9]  K. Hagihara,et al.  Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy , 2010 .

[10]  K. Hagihara,et al.  Effect of Extrusion Parameters on Mechanical Properties of Mg97Zn1Y2 Alloys at Room and Elevated Temperatures , 2010 .

[11]  K. Hagihara,et al.  Plastic deformation behavior of Mg89Zn4Y7 extruded alloy composed of long-period stacking ordered phase , 2010 .

[12]  A. Inoue,et al.  Rapidly Solidified Powder Metallurgy Mg97Zn1Y2Alloys with Excellent Tensile Yield Strength above 600 MPa , 2001 .

[13]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[14]  T. Page,et al.  An explanation of the indentation size effect in ceramics , 1989 .