A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates

This paper presents a methodology for safety verification of continuous and hybrid systems in the worst-case and stochastic settings. In the worst-case setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method.

[1]  M. Jirstrand Invariant sets for a class of hybrid systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[2]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[3]  A. Papachristodoulou,et al.  Analysis of switched and hybrid systems - beyond piecewise quadratic methods , 2003, Proceedings of the 2003 American Control Conference, 2003..

[4]  Hirokazu Anai,et al.  Reach Set Computations Using Real Quantifier Elimination , 2001, HSCC.

[5]  Ashish Tiwari Approximate Reachability for Linear Systems , 2003, HSCC.

[6]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[7]  Anders Rantzer,et al.  Primal-Dual Tests for Safety and Reachability , 2005, HSCC.

[8]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[9]  George J. Pappas,et al.  S.O.S. for safety , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[10]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[11]  Ali Jadbabaie,et al.  Safety Verification of Hybrid Systems Using Barrier Certificates , 2004, HSCC.

[12]  Stavros Tripakis,et al.  Verification of Hybrid Systems with Linear Differential Inclusions Using Ellipsoidal Approximations , 2000, HSCC.

[13]  John Lygeros,et al.  Stochastic Hybrid Models: An Overview , 2003, ADHS.

[14]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[15]  S. Shankar Sastry,et al.  Probabilistic safety analysis in three dimensional aircraft flight , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[16]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[17]  Peter J Seiler,et al.  SOSTOOLS and its control applications , 2005 .

[18]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[19]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[20]  George J. Pappas,et al.  Geometric programming relaxations for linear system reachability , 2004, Proceedings of the 2004 American Control Conference.

[21]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[22]  João Pedro Hespanha,et al.  Stochastic Hybrid Systems: Application to Communication Networks , 2004, HSCC.

[23]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[24]  A. Papachristodoulou,et al.  Controlled hybrid system safety verification: advanced life support system testbed , 2005, Proceedings of the 2005, American Control Conference, 2005..

[25]  B. Reznick Some concrete aspects of Hilbert's 17th Problem , 2000 .

[26]  Antonis Papachristodoulou,et al.  Safety Verification of Controlled Advanced Life Support System Using Barrier Certificates , 2005, HSCC.

[27]  Henny B. Sipma,et al.  Constructing invariants for hybrid systems , 2004, Formal Methods Syst. Des..

[28]  Antoine Girard,et al.  Reachability Analysis of Nonlinear Systems Using Conservative Approximation , 2003, HSCC.

[29]  John Lygeros,et al.  Reachability Questions in Piecewise Deterministic Markov Processes , 2003, HSCC.

[30]  John Lygeros,et al.  Towars a Theory of Stochastic Hybrid Systems , 2000, HSCC.

[31]  M. K. Ghosh,et al.  Optimal control of switching diffusions with application to flexible manufacturing systems , 1993 .

[32]  Bruce H. Krogh,et al.  Computational techniques for hybrid system verification , 2003, IEEE Trans. Autom. Control..

[33]  Nancy A. Lynch,et al.  A Toolbox for Proving and MaintainingHybrid Speci cationsMichael , 1997 .

[34]  G. Papavassilopoulos,et al.  Bilinearity and complementarity in robust control , 1999 .

[35]  Anders Rantzer,et al.  Convex Programs for Temporal Verification of Nonlinear Dynamical Systems , 2007, SIAM J. Control. Optim..

[36]  Alexandre M. Bayen,et al.  Computational techniques for the verification of hybrid systems , 2003, Proc. IEEE.

[37]  Ashish Tiwari,et al.  Nonlinear Systems: Approximating Reach Sets , 2004, HSCC.

[38]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[39]  Gerald A. Edgar,et al.  Stopping times and directed processes , 1992 .

[40]  Ashish Tiwari,et al.  Series of Abstractions for Hybrid Automata , 2002, HSCC.

[41]  Pablo A. Parrilo,et al.  Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[42]  J. Doyle,et al.  Optimization-based methods for nonlinear and hybrid systems verification , 2005 .

[43]  John Lygeros,et al.  Stochastic reachability for discrete time systems: an application to aircraft collision avoidance , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[44]  Rajeev Alur,et al.  Progress on Reachability Analysis of Hybrid Systems Using Predicate Abstraction , 2003, HSCC.

[45]  Eugene Asarin,et al.  The d/dt Tool for Verification of Hybrid Systems , 2002, CAV.

[46]  S. Sastry,et al.  Towars a Theory of Stochastic Hybrid Systems , 2000, HSCC.

[47]  Alberto Bemporad,et al.  Optimization-Based Verification and Stability Characterization of Piecewise Affine and Hybrid Systems , 2000, HSCC.

[48]  L. Rogers,et al.  Diffusions, Markov Processes and Martingales, Vol. 1, Foundations. , 1996 .

[49]  Pravin Varaiya,et al.  Ellipsoidal Techniques for Reachability Analysis , 2000, HSCC.

[50]  Stephen Prajna Barrier certificates for nonlinear model validation , 2006, Autom..

[51]  Gerardo Lafferriere,et al.  Symbolic Reachability Computation for Families of Linear Vector Fields , 2001, J. Symb. Comput..

[52]  U. T. Jonsson On reachability analysis of uncertain hybrid systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[53]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[54]  George J. Pappas,et al.  Stochastic safety verification using barrier certificates , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[55]  Henny B. Sipma,et al.  Constructing invariants for hybrid systems , 2008, Formal Methods Syst. Des..

[56]  Manuela L. Bujorianu,et al.  Extended Stochastic Hybrid Systems and Their Reachability Problem , 2004, HSCC.

[57]  Anders Rantzer,et al.  On the necessity of barrier certificates , 2005 .

[58]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..