Lectures on Numerical Methods for Non-Linear Variational Problems

Many mechanics and physics problems have variational formulations making them appropriate for numerical treatment by finite element techniques and efficient iterative methods. This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, augmented Lagrangians, and nonlinear least square methods are all covered in detail, as are many applications. "Numerical Methods for Nonlinear Variational Problems," originally published in the Springer Series in Computational Physics, is a classic in applied mathematics and computational physics and engineering. This long-awaited softcover re-edition is still a valuable resource for practitioners in industry and physics and for advanced students.

[1]  L Howarth,et al.  Mathematical Aspects of Subsonic and Transonic Gas Dynamics , 1959 .

[2]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[3]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[4]  S. Schechter ITERATION METHODS FOR NONLINEAR PROBLEMS , 1962 .

[5]  R. A. Toupin. Introduction to Mechanics of Continua. By W ILLIAM P RAOER . Boston : Ginn and Go., 1961. 230 pp. $8.00. , 1962 .

[6]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[7]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[8]  P. P. Mosolov,et al.  Variational methods in the theory of the fluidity of a viscous-plastic medium , 1965 .

[9]  P. G. Ciarlet,et al.  Numerical methods of high-order accuracy for nonlinear boundary value Problems , 1968 .

[10]  S. Schechter,et al.  Relaxation Methods for Convex Problems , 1968 .

[11]  Haim Brezis,et al.  Sur la régularité de la solution d'inéquations elliptiques , 1968 .

[12]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[13]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[14]  J. Daniel On the approximate minimization of functionals , 1969 .

[15]  M. Hestenes Multiplier and gradient methods , 1969 .

[16]  R. Kellogg A nonlinear alternating direction method , 1969 .

[17]  A. Householder The numerical treatment of a single nonlinear equation , 1970 .

[18]  Haim Brezis,et al.  Perturbations of nonlinear maximal monotone sets in banach space , 1970 .

[19]  J. Cole,et al.  Calculation of plane steady transonic flows , 1970 .

[20]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[21]  Haim Brezis,et al.  Equivalence de deux inéquations variationnelles et applications , 1971 .

[22]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[23]  Elijah Polak,et al.  Computational methods in optimization , 1971 .

[24]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[25]  R. Glowinski,et al.  Analyse numerique du champ magnetique d'un alternateur par elements finis et sur-relaxation ponctuelle non lineaire , 1974 .

[26]  Friedrich L. Bauer,et al.  Supercritical Wing Sections II , 1974 .

[27]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[28]  Gilbert Strang,et al.  One-sided approximation and variational inequalities , 1974 .

[29]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[30]  V. Comincioli On some oblique derivative problems arising in the fluid flow in porous media. A theoretical and numerical approach , 1975 .

[31]  G. H. Golub,et al.  Generalized conjugate gradient method for nonsymmetric systems of linear equations. [Solution of systems of linear equations such as arise in solution of elliptic partial differential equations] , 1976 .

[32]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[33]  Antony Jameson,et al.  NUMERICAL SOLUTION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS OF MIXED TYPE , 1976 .

[34]  Claes Johnson,et al.  A Convergence Estimate for an Approximation of a Parabolic Variational Inequality , 1976 .

[35]  P. G. Ciarlet,et al.  Numerical analysis of the finite element method , 1976 .

[36]  Alan E. Berger,et al.  The truncation method for the solution of a class of variational inequalities , 1976 .

[37]  Lectures on numerical methods for time dependent equations : applications to fluid flow problems , 1976 .

[38]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1977 .

[39]  Richard S. Falk,et al.  Error estimates for elasto-plastic problems , 1977 .

[40]  G. Duvaut,et al.  Numerical analysis of flow with or without wake past a symmetric two‐dimensional profile without incidence , 1977 .

[41]  R. Temam Navier-Stokes Equations , 1977 .

[42]  Jean Cea,et al.  Optimization - Theory and Algorithms , 1978 .

[43]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .