Elements of a theory of algebraic theories

Kleisli bicategories are a natural environment in which the combinatorics involved in various notions of algebraic theory can be handled in a uniform way. The setting allows a clear account of comparisons between such notions. Algebraic theories, symmetric operads and nonsymmetric operads are treated as examples.

[1]  John Power,et al.  A Unified Category-theoretic Semantics for Binding Signatures in Substructural Logics , 2006, J. Log. Comput..

[2]  John Power,et al.  Pseudo-distributive Laws , 2003, MFPS.

[3]  E. Riehl Basic concepts of enriched category theory , 2014 .

[4]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[5]  John Power,et al.  Pseudo-commutative monads and pseudo-closed 2-categories , 2002 .

[6]  Miki Tanaka,et al.  Pseudo-Distributive Laws and a Unified Framework for Variable Binding , 2004 .

[7]  G. M. Kelly,et al.  A universal property of the convolution monoidal structure , 1986 .

[8]  E. Manes Algebraic Theories in a Category , 1976 .

[9]  John Power,et al.  The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads , 2007, Computation, Meaning, and Logic.

[10]  T. Leinster Are Operads Algebraic Theories? , 2004, math/0404016.

[11]  Pierre-Louis Curien Operads, clones, and distributive laws , 2012, ArXiv.

[12]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Law Fw FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .

[14]  Glynn Winskel,et al.  New-HOPLA: A Higher-order Process Language with Name Generation , 2004, IFIP TCS.

[15]  Thorsten Altenkirch,et al.  Monads need not be endofunctors , 2010, Log. Methods Comput. Sci..

[16]  Glynn Winskel,et al.  Profunctors, open maps and bisimulation , 2004, Mathematical Structures in Computer Science.

[17]  Martin Hyland,et al.  Some reasons for generalising domain theory , 2010, Mathematical Structures in Computer Science.

[18]  Giuseppe Rosolini,et al.  A Category Theoretic Formulation for Engeler-style Models of the Untyped lambda , 2006, MFCSIT.

[19]  F. Marmolejo,et al.  Distributive laws for pseudomonads. , 1999 .

[20]  Edmund Robinson,et al.  Premonoidal categories and notions of computation , 1997, Mathematical Structures in Computer Science.

[21]  J. Benabou Introduction to bicategories , 1967 .

[22]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[23]  P. T. Johnstone,et al.  TOPOSES, TRIPLES AND THEORIES (Grundlehren der mathematischen Wissenschaften 278) , 1986 .

[24]  Glynn Winskel,et al.  The cartesian closed bicategory of generalised species of structures , 2008 .

[25]  Gordon D. Plotkin,et al.  Abstract syntax and variable binding , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[26]  G. M. Kelly,et al.  Two-dimensional monad theory , 1989 .