Feature correlation evaluation approach for iris feature quality measure

It is challenging to develop an iris image quality measure to determine compressed iris image quality. The compression process introduces new artificial patterns while suppressing existing iris patterns. This paper proposes a feature correlation evaluation approach for iris image quality measure, which can discriminate the artificial patterns from the natural iris patterns and can also measure iris image quality for uncompressed images. The experimental results show that the proposed method could objectively perform quality measure on both non-compressed and compressed images.

[1]  John Daugman,et al.  Effect of Severe Image Compression on Iris Recognition Performance , 2008, IEEE Transactions on Information Forensics and Security.

[2]  Yuanning Liu,et al.  A quality evaluation method of iris images sequence based on wavelet coefficients in "region of interest" , 2004, The Fourth International Conference onComputer and Information Technology, 2004. CIT '04..

[3]  Ahmet M. Eskicioglu,et al.  An SVD-based grayscale image quality measure for local and global assessment , 2006, IEEE Transactions on Image Processing.

[4]  Yingzi Du,et al.  Transforming traditional iris recognition systems to work on non-ideal situations , 2009, 2009 IEEE Workshop on Computational Intelligence in Biometrics: Theory, Algorithms, and Applications.

[5]  Yingzi Du,et al.  Region-based SIFT approach to iris recognition , 2009 .

[6]  Yingzi Du,et al.  Effects of image compression on iris recognition performance and image quality , 2009, 2009 IEEE Workshop on Computational Intelligence in Biometrics: Theory, Algorithms, and Applications.

[7]  P. D. Thouin,et al.  Survey and comparative analysis of entropy and relative entropy thresholding techniques , 2006 .

[8]  Yingzi Du,et al.  Performance analysis and parameter optimization for iris recognition using Log-Gabor wavelet , 2007, Electronic Imaging.

[9]  Stefan Winkler,et al.  Issues in vision modeling for perceptual video quality assessment , 1999, Signal Process..

[10]  Yingzi Du,et al.  Feature information based quality measure for iris recognition , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[11]  Dexin Zhang,et al.  Personal Identification Based on Iris Texture Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[13]  Chein-I Chang,et al.  3D combinational curves for accuracy and performance analysis of positive biometrics identification , 2008 .

[14]  John Daugman,et al.  How iris recognition works , 2002, IEEE Transactions on Circuits and Systems for Video Technology.

[15]  Alan C. Bovik,et al.  Image information and visual quality , 2006, IEEE Trans. Image Process..

[16]  Lionel Torres,et al.  Person Identification Technique Using Human Iris Recognition , 2002 .

[17]  Hsuan Ren,et al.  New hyperspectral discrimination measure for spectral similarity , 2003, SPIE Defense + Commercial Sensing.

[18]  Chein-I. Chang,et al.  New Hyperspectral Discrimination Measure for Spectral Characterization , 2004 .

[19]  Yingzi Du,et al.  Information distance-based selective feature clarity measure for iris recognition , 2007, Electronic Imaging.

[20]  Anil K. Jain,et al.  Localized Iris Image Quality Using 2-D Wavelets , 2006, ICB.

[21]  Yingzi Du,et al.  A Selective Feature Information Approach for Iris Image-Quality Measure , 2008, IEEE Transactions on Information Forensics and Security.

[22]  David Chandler,et al.  Biometric Product Testing Final Report , 2001 .

[23]  Gustavo de Veciana,et al.  An information fidelity criterion for image quality assessment using natural scene statistics , 2005, IEEE Transactions on Image Processing.

[24]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[25]  Chein-I Chang,et al.  Automated system for text detection in individual video images , 2003, J. Electronic Imaging.

[26]  Natalia A. Schmid,et al.  Image quality assessment for iris biometric , 2006, SPIE Defense + Commercial Sensing.

[27]  Yingzi Du,et al.  Transforming Traditional Iris Recognition Systems to Work in Nonideal Situations , 2009, IEEE Transactions on Industrial Electronics.

[28]  Hiroshi Nakajima,et al.  An Effective Approach for Iris Recognition Using Phase-Based Image Matching , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Michael Boyd,et al.  Iris Recognition , 2006 .

[30]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Thad Welch,et al.  Use of one-dimensional iris signatures to rank iris pattern similarities , 2006 .

[32]  Yingzi Eliza Du Review of iris recognition: cameras, systems, and their applications , 2006 .

[33]  Yingzi Du,et al.  Analysis of partial iris recognition using a 1D approach , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[34]  Xuelong Li,et al.  A natural image quality evaluation metric , 2009, Signal Process..

[35]  Andrew P. Bradley,et al.  A wavelet visible difference predictor , 1999, IEEE Trans. Image Process..

[36]  Richa Singh,et al.  Improving Iris Recognition Performance Using Segmentation, Quality Enhancement, Match Score Fusion, and Indexing , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[37]  Patrick J. Flynn,et al.  Image understanding for iris biometrics: A survey , 2008, Comput. Vis. Image Underst..

[38]  Libor Masek,et al.  MATLAB Source Code for a Biometric Identification System Based on Iris Patterns , 2003 .

[39]  D. M. Etter,et al.  Analysis of partial iris recognition , 2005, SPIE Defense + Commercial Sensing.

[40]  K.W. Bowyer,et al.  The Iris Challenge Evaluation 2005 , 2008, 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems.

[41]  James R. Matey,et al.  Iris on the Move: Acquisition of Images for Iris Recognition in Less Constrained Environments , 2006, Proceedings of the IEEE.

[42]  Xuelong Li,et al.  Image Quality Assessment Based on Multiscale Geometric Analysis , 2009, IEEE Transactions on Image Processing.

[43]  Chein-I Chang,et al.  Unsupervised approach to color video thresholding , 2004 .