Expressiveness of Stable Model Semantics for Disjuncitve Logic Programs with Functions

Abstract In this paper, we study the expressive power and recursion-theoretic complexity of disjunctive logic programs with functions symbols over Herbrand models. In particular, we consider the disjunctive stable model semantics, and show that a relation R is definable over the Herbrand universe of a disjunctive logic program if and only if R is Π 1 1 definable. Thus, disjunctive logic programming under the stable model semantics expresses exactly Π 1 1 , and is thus Π 1 1 complete over the integers. This result is surprising because it shows that disjunctive logic programming is not more expressive than normal logic programming under the stable or well-founded semantics. This sharply contrasts with the function-free case.

[1]  Hajnal Andréka,et al.  The generalized completeness of Horn predicate-logic as a programming language , 1978, Acta Cybern..

[2]  Howard A. Blair,et al.  The Recursion-Theoretical Complexity of the Semantics of Predicate Logic as a Programming Language , 1982, Inf. Control..

[3]  David Scott Warren,et al.  Tabled evaluation with delaying for general logic programs , 1996, JACM.

[4]  Victor W. Marek,et al.  Autoepistemic logic , 1991, JACM.

[5]  Thomas Eiter,et al.  The Expressive Power of Partial Models in Disjunctive Deductive Databases , 1996, Logic in Databases.

[6]  Georg Gottlob,et al.  Adding disjunction to datalog (extended abstract) , 1994, PODS.

[7]  Jon Barwise,et al.  Admissible sets and structures , 1975 .

[8]  Victor W. Marek,et al.  The Stable Models of a Predicate Logic Program , 1994, J. Log. Program..

[9]  Jack Minker,et al.  On Indefinite Databases and the Closed World Assumption , 1987, CADE.

[10]  Yiannis N. Moschovakis,et al.  Elementary induction on abstract structures , 1974 .

[11]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[12]  Georg Gottlob,et al.  Normal Forms for Second-Order Logic over Finite Structures, and Classification of NP Optimization Problems , 1996, Ann. Pure Appl. Log..

[13]  Yiannis N. Moschovakis,et al.  Global inductive definability , 1978, Journal of Symbolic Logic.

[14]  Howard A. Blair,et al.  The Complexity of Local Stratification , 1994, Fundam. Informaticae.

[15]  Victor W. Marek,et al.  Computing Intersection of Autoepistemic Expansions , 1991, LPNMR.

[16]  Krzysztof R. Apt,et al.  Arithmetic classification of perfect models of stratified programs , 1991, Fundam. Informaticae.

[17]  Chitta Baral,et al.  Logic Programming and Knowledge Representation , 1994, J. Log. Program..

[18]  John S. Schlipf,et al.  The Expressive Powers of the Logic Programming Semantics , 1995, J. Comput. Syst. Sci..

[19]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[20]  Jack Minker,et al.  Logic and Databases: A 20 Year Retrospective , 1996, Logic in Databases.

[21]  Kenneth A. Ross,et al.  A procedural semantics for well founded negation in logic programs , 1989, J. Log. Program..

[22]  Marco Schaerf,et al.  A Survey of Complexity Results for Nonmonotonic Logics , 1993, J. Log. Program..

[23]  Victor W. Marek,et al.  How Complicated is the Set of Stable Models of a Recursive Logic Program? , 1992, Ann. Pure Appl. Log..

[24]  Jorge Lobo,et al.  Foundations of disjunctive logic programming , 1992, Logic Programming.

[25]  Carolina Ruiz,et al.  Semantics for Disjunctive Logic Programs with Explicit and Default Negation , 1994, Fundam. Informaticae.