Exponential time-differencing with embedded Runge-Kutta adaptive step control
暂无分享,去创建一个
[1] W. Wright,et al. The scaling and modified squaring method for matrix functions related to the exponential , 2009 .
[2] P Di Trapani,et al. Nonlinear X-wave formation by femtosecond filamentation in Kerr media. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[3] Lloyd N. Trefethen,et al. Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..
[4] W. H. Enright. Analysis of error control strategies for continuous Runge-Kutta methods , 1989 .
[5] L. Trefethen,et al. Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals , 2007 .
[6] Mayya Tokman,et al. Efficient design of exponential-Krylov integrators for large scale computing , 2010, ICCS.
[7] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[8] T. Driscoll. A composite Runge-Kutta method for the spectral solution of semilinear PDEs , 2002 .
[9] J. Butcher. Coefficients for the study of Runge-Kutta integration processes , 1963, Journal of the Australian Mathematical Society.
[10] J. Marburger,et al. Self-focusing: theory , 1975, International Quantum Electronics Conference, 2005..
[11] Håvard Berland,et al. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET , 2005 .
[12] Marlis Hochbruck,et al. Exponential Rosenbrock-Type Methods , 2008, SIAM J. Numer. Anal..
[13] A. J. Przekwas,et al. A comparative study of advanced shock-capturing shcemes applied to Burgers' equation , 1992 .
[14] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[15] S. Krogstad. Generalized integrating factor methods for stiff PDEs , 2005 .
[16] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[17] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[18] S. Cox,et al. Exponential Time Differencing for Stiff Systems , 2002 .
[19] J. M. Keiser,et al. A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .
[20] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[21] B. Minchev,et al. A review of exponential integrators for first order semi-linear problems , 2005 .
[22] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[23] Mayya Tokman,et al. Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods , 2006, J. Comput. Phys..
[24] Brynjulf Owren,et al. B-series and Order Conditions for Exponential Integrators , 2005, SIAM J. Numer. Anal..
[25] A. Couairon,et al. Femtosecond filamentation in transparent media , 2007 .
[26] Jie Shen,et al. Spectral Methods: Algorithms, Analysis and Applications , 2011 .
[27] Erwin Fehlberg,et al. Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme , 1970, Computing.
[28] N. Higham. The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..
[29] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[30] Gene H. Golub,et al. Matrix computations , 1983 .
[31] J. D. Lawson. Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .
[32] Marlis Hochbruck,et al. Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..
[33] H. Fisk Johnson,et al. An improved method for computing a discrete Hankel transform , 1987 .
[34] Marlis Hochbruck,et al. Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..