Exponential time-differencing with embedded Runge-Kutta adaptive step control

We have presented the first embedded Runge-Kutta exponential time-differencing (RKETD) methods of fourth order with third order embedding and fifth order with third order embedding for non-Rosenbrock type nonlinear systems. A procedure for constructing RKETD methods that accounts for both order conditions and stability is outlined. In our stability analysis, the fast time scale is represented by a full linear operator in contrast to particular scalar cases considered before. An effective time-stepping strategy based on reducing both ETD function evaluations and rejected steps is described. Comparisons of performance with adaptive-stepping integrating factor (IF) are carried out on a set of canonical partial differential equations: the shock-fronts of Burgers equation, interacting KdV solitons, KS controlled chaos, and critical collapse of two-dimensional NLS.

[1]  W. Wright,et al.  The scaling and modified squaring method for matrix functions related to the exponential , 2009 .

[2]  P Di Trapani,et al.  Nonlinear X-wave formation by femtosecond filamentation in Kerr media. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[4]  W. H. Enright Analysis of error control strategies for continuous Runge-Kutta methods , 1989 .

[5]  L. Trefethen,et al.  Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals , 2007 .

[6]  Mayya Tokman,et al.  Efficient design of exponential-Krylov integrators for large scale computing , 2010, ICCS.

[7]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[8]  T. Driscoll A composite Runge-Kutta method for the spectral solution of semilinear PDEs , 2002 .

[9]  J. Butcher Coefficients for the study of Runge-Kutta integration processes , 1963, Journal of the Australian Mathematical Society.

[10]  J. Marburger,et al.  Self-focusing: theory , 1975, International Quantum Electronics Conference, 2005..

[11]  Håvard Berland,et al.  NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET , 2005 .

[12]  Marlis Hochbruck,et al.  Exponential Rosenbrock-Type Methods , 2008, SIAM J. Numer. Anal..

[13]  A. J. Przekwas,et al.  A comparative study of advanced shock-capturing shcemes applied to Burgers' equation , 1992 .

[14]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[15]  S. Krogstad Generalized integrating factor methods for stiff PDEs , 2005 .

[16]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[17]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[18]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[19]  J. M. Keiser,et al.  A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .

[20]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[21]  B. Minchev,et al.  A review of exponential integrators for first order semi-linear problems , 2005 .

[22]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[23]  Mayya Tokman,et al.  Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods , 2006, J. Comput. Phys..

[24]  Brynjulf Owren,et al.  B-series and Order Conditions for Exponential Integrators , 2005, SIAM J. Numer. Anal..

[25]  A. Couairon,et al.  Femtosecond filamentation in transparent media , 2007 .

[26]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[27]  Erwin Fehlberg,et al.  Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme , 1970, Computing.

[28]  N. Higham The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..

[29]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[30]  Gene H. Golub,et al.  Matrix computations , 1983 .

[31]  J. D. Lawson Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .

[32]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[33]  H. Fisk Johnson,et al.  An improved method for computing a discrete Hankel transform , 1987 .

[34]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..