The technological and commercial expansion of electric propulsion

[1]  J. Herscovitz,et al.  Venus - First In-Flight Results of the Electric Propulsion System , 2018, 2018 Joint Propulsion Conference.

[2]  Umair Siddiqui,et al.  Updated Performance Measurements and Analysis of the Phase Four RF Thruster , 2018, 2018 Joint Propulsion Conference.

[3]  M. Ya. Marov,et al.  Integrated Studies of Electric Propulsion Engines during Flights in the Earth’s Ionosphere , 2018 .

[4]  Yasuhiro Kawakatsu,et al.  DESTINY+ Trajectory Design to (3200) Phaethon , 2018 .

[5]  Yan Shen,et al.  Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers , 2018 .

[6]  H. Koizumi,et al.  Development and Flight Operation of a Miniature Ion Propulsion System , 2017, Journal of Propulsion and Power.

[7]  Ryan Rapetti,et al.  Development of a 13 kW Hall Thruster Propulsion System Performance Model for AEPS , 2017 .

[8]  Kristina M. Lemmer,et al.  Propulsion for CubeSats , 2017 .

[9]  R LevDan,et al.  The Rise of the Electric Age for Satellite Propulsion , 2017 .

[10]  Damon Landau,et al.  Psyche: Journey to a metal world , 2017, 2017 IEEE Aerospace Conference.

[11]  William Yeong Liang Ling,et al.  Characteristics of a non-volatile liquid propellant in liquid-fed ablative pulsed plasma thrusters , 2017 .

[12]  David Krejci,et al.  Emission Characteristics of Passively Fed Electrospray Microthrusters with Propellant Reservoirs , 2017 .

[13]  Michael Keidar,et al.  Micropropulsion Based on Vacuum Arc Physics and Technology: A Review , 2016 .

[14]  Reza Haghighi,et al.  Distributed optimal formation flying control of a group of nanosatellites , 2016, 2016 12th IEEE International Conference on Control and Automation (ICCA).

[15]  Yun-Hwang Jeong,et al.  Thruster Performance Analysis of Hall-effect Thruster by Orbit Evolution , 2016 .

[16]  Stéphane Mazouffre,et al.  Electric propulsion for satellites and spacecraft: established technologies and novel approaches , 2016 .

[17]  Simone Ciaralli,et al.  Results of the qualification test campaign of a Pulsed Plasma Thruster for Cubesat Propulsion (PPTCUP) , 2016 .

[18]  W. P. Wright,et al.  Electric micropropulsion systems , 2015 .

[19]  Hal Hodson,et al.  Internet's final frontier , 2015 .

[20]  Hal Hodson,et al.  Turn on, tune in, don't drop out , 2015 .

[21]  Jorge J Delgado,et al.  Qualification of the SPT-140 for use on Western Spacecraft , 2014 .

[22]  A. Rezaeiha,et al.  Review of Worldwide Activities in Liquid-Fed Pulsed Plasma Thruster , 2014 .

[23]  Fabio Santoni,et al.  An innovative deployable solar panel system for Cubesats , 2014 .

[24]  Fabio Santoni,et al.  Miniaturized attitude control system for nanosatellites , 2012 .

[25]  A. Suwaidi,et al.  DubaiSat-2 mission overview , 2012 .

[26]  Marc D. Rayman,et al.  In-Flight Operation of the Dawn Ion Propulsion System Through the Preparations for Escape From Vesta , 2012 .

[27]  E. Stoll,et al.  The RapidEye constellation and its data products , 2012, 2012 IEEE Aerospace Conference.

[28]  S. Kenyon,et al.  STRaND-1: Use of a $500 Smartphone as the Central Avionics of a Nanosatellite , 2011 .

[29]  Peter Shaw,et al.  Pulsed Plasma Thrusters for Small Satellites , 2011 .

[30]  Jean-Michel Sannino,et al.  Ariane 5-ME and Electric Propulsion: GEO Insertion Options , 2011 .

[31]  A. Mathers,et al.  Demonstration of 10,400 Hours of Operation on a 4.5 kW Qualification Model Hall Thruster , 2010 .

[32]  John C. Mankins,et al.  Technology readiness assessments: A retrospective , 2009 .

[33]  D. A. Lichtin,et al.  AMC-1 (GE-1) Arcjets at 12-plus Years On-Orbit , 2009 .

[34]  I. Katz,et al.  Fundamentals of Electric Propulsion: Ion and Hall Thrusters , 2008 .

[35]  Craig Kluever,et al.  Small Satellite LEO Maneuvers with Low-Power Electric Propulsion , 2008 .

[36]  Michael J. Patterson,et al.  NEXT Ion Propulsion System Development Status and Performance , 2007 .

[37]  Edgar Y. Choueiri,et al.  A Critical History of Electric Propulsion: The First 50 Years (1906-1956) , 2004 .

[38]  Rainer Killinger,et al.  ARTEMIS orbit raising inflight experience with ion propulsion , 2003 .

[39]  Yukio Shimizu,et al.  On-Orbit Demonstration of a Pulsed Self-Field Magnetoplasmadynamic Thruster System , 2000 .

[40]  Rainer Killinger,et al.  Ion propulsion for drag compensation of GOCE , 2000 .

[41]  Michael J. Patterson,et al.  A Synopsis of Ion Propulsion Development Projects in the United States: SERT 1 to Deep Space I , 1999 .

[42]  Dan Cohen,et al.  Initial On-Orbit Performance of Hydrazine Arcjets on A21 OOTM Satellites , 1999 .

[43]  Timothy J. Lawrence,et al.  Research into Resistojet Rockets for small satellite applications , 1998 .

[44]  M. Martinez-Sanchez,et al.  Spacecraft Electric Propulsion—An Overview , 1998 .

[45]  P. Turchi,et al.  Pulsed Plasma Thruster , 1998 .

[46]  Martin Sweeting,et al.  UoSAT-12 minisatellite for high performance earth observation at low cost 1 1 Paper IAF-96-B2-09 pre , 1997 .

[47]  Roger M. Myers,et al.  Pulsed Plasma Thruster Technology for Small Satellite Missions , 1995 .

[48]  Roger M. Myers,et al.  Advanced propulsion for geostationary orbit insertion and north-south station keeping , 1995 .

[49]  H. Kramer Observation of the Earth and Its Environment: Survey of Missions and Sensors , 1994 .

[50]  Roger M. Myers,et al.  Electromagnetic propulsion for spacecraft , 1993 .

[51]  K. Machida,et al.  Design of Ion Thruster System for Satellite Position Control , 1981 .

[52]  Kyoichi Kuriki,et al.  The MPD Thruster Test on the Space Shuttle , 1979 .

[53]  V. Zhurin,et al.  Electric propulsion research and development in the USSR , 1976 .

[54]  Rescue in space. , 1970, British medical journal.

[55]  T. Pugmire,et al.  Applied resistojet technology , 1970 .

[56]  W. Guman,et al.  Pulsed plasma microthruster propulsion system for synchronous orbit satellite , 1969 .

[57]  R. V. Greco,et al.  Resistojet systems manned spacecraft applications. , 1969 .

[58]  H. Seifert,et al.  Rocket Propulsion Elements , 1963 .

[59]  David Hinkley,et al.  Improving Mission Success of CubeSats , 2018 .

[60]  Tricia Talbert,et al.  NASA’S First Asteroid Deflection Mission Enters Next Design Phase , 2017 .

[61]  Hani Kamhawi,et al.  Development Status of the 12 . 5 kW Hall Effect Rocket with Magnetic Shielding ( HERMeS ) IEPC-2017-231 , 2017 .

[62]  Jason A. Young,et al.  First Performance Measurements of the Phase Four RF Thruster IEPC-2017-431 , 2017 .

[63]  Satoshi Hosoda,et al.  Development and Testing of the Hayabusa2 Ion Engine System , 2016 .

[64]  Yusuke Nakamura,et al.  Initial Flight Operations of the Miniature Propulsion System Installed on Small Space Probe: PROCYON , 2016 .

[65]  Giulio Manzoni,et al.  Cubesat Micropropulsion Characterization in Low Earth Orbit , 2015 .

[66]  Huw Simpson,et al.  QinetiQ’s T6 and T5 Ion Thruster Electric Propulsion System Architectures and Performances , 2015 .

[67]  R. A. Lewis,et al.  Qualification of the T6 Thruster for BepiColombo , 2015 .

[68]  H. Koizumi,et al.  Engineering Model of the Miniature Ion Propulsion System for the Nano-satellite: HODOYOSHI-4 , 2014 .

[69]  Samudra E. Haque,et al.  Electric propulsion for small satellites , 2014 .

[70]  Fred Wilson,et al.  30 Years of Electric Propulsion Flight Experience at , 2013 .

[71]  Toshiyuki Ozaki,et al.  A New Orbit Control Algorithm for the 20 mN Class Ion Engine System , 2013 .

[72]  Johannes Benkhoff,et al.  BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals , 2010 .

[73]  Seong-Min Kang,et al.  Development of Hall-effect Thruster for Orbit Correction and Transfer of Small Satellites , 2009 .

[74]  David Manzella,et al.  Low Cost Electric Propulsion Thruster for Deep Space Robotic Missions , 2007 .

[75]  V. A. Obukhov,et al.  Development of High Power Magnetoplasmadynamic Thrusters in the USSR , 2007 .

[76]  Denis Estublier,et al.  The SMART-1 Hall Effect Thruster Around the Moon: In Flight Experience , 2005 .

[77]  William Tighe,et al.  L-3 Communications ETI Electric Propulsion Overview , 2005 .

[78]  Alexander Semenkin,et al.  STATE OF THE ART AND PROSPECTS OF ELECTRIC PROPULSION IN RUSSIA , 2003 .

[79]  Martin Sweeting,et al.  The Development of a Family of Resistojet Thruster Propulsion Systems for Small Spacecraft , 2003 .

[80]  Jochen Schein,et al.  Microvacuum Arc Thruster Design for a Cubesat Class Satellite , 2002 .

[81]  Vladimir Kim,et al.  Electric Propulsion Activity in Russia , 2001 .

[82]  Juergen Mueller,et al.  Thruster Options for Microspacecraft: A Review and Evaluation of State-of-the-Art and Emerging Technologies , 2000 .

[83]  M. J. Mirtich Resistojet propulsion for large spacecraft systems , 1982 .